Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Geiger is active.

Publication


Featured researches published by Simon Geiger.


ChemElectroChem | 2015

Dissolution of Platinum in the Operational Range of Fuel Cells.

Serhiy Cherevko; Gareth P. Keeley; Simon Geiger; Aleksandar R. Zeradjanin; Nejc Hodnik; Nadiia Kulyk; Karl Johann Jakob Mayrhofer

Abstract One of the most important practical issues in low‐temperature fuel‐cell catalyst degradation is platinum dissolution. According to the literature, it initiates at 0.6–0.9 VRHE, whereas previous time‐ and potential‐resolved inductively coupled plasma mass spectrometry (ICP–MS) experiments, however, revealed dissolution onset at only 1.05 VRHE. In this manuscript, the apparent discrepancy is addressed by investigating bulk and nanoparticulated catalysts. It is shown that, given enough time for accumulation, traces of platinum can be detected at potentials as low as 0.85 VRHE. At these low potentials, anodic dissolution is the dominant process, whereas, at more positive potentials, more platinum dissolves during the oxide reduction after accumulation. Interestingly, the potential and time dissolution dependence is similar for both types of electrode. Dissolution processes are discussed with relevance to fuel‐cell operation and plausible dissolution mechanisms are considered.


Angewandte Chemie | 2017

Stability and Activity of Non-Noble-Metal-Based Catalysts Toward the Hydrogen Evolution Reaction

Marc Ledendecker; Jared S. Mondschein; Olga Kasian; Simon Geiger; Daniel Göhl; Max Schalenbach; Aleksandar R. Zeradjanin; Serhiy Cherevko; Raymond E. Schaak; Karl Johann Jakob Mayrhofer

A fundamental understanding of the behavior of non-noble based materials toward the hydrogen evolution reaction is crucial for the successful implementation into practical devices. Through the implementation of a highly sensitive inductively coupled plasma mass spectrometer coupled to a scanning flow cell, the activity and stability of non-noble electrocatalysts is presented. The studied catalysts comprise a range of compositions, including metal carbides (WC), sulfides (MoS2 ), phosphides (Ni5 P4 , Co2 P), and their base metals (W, Ni, Mo, Co); their activity, stability, and degradation behavior was elaborated and compared to the state-of-the-art catalyst platinum. The non-noble materials are stable at HER potentials but dissolve substantially when no current is flowing. Through pre- and post-characterization of the catalysts, explanations of their stability (thermodynamics and kinetics) are discussed, challenges for the application in real devices are analyzed, and strategies for circumventing dissolution are suggested. The precise correlation of metal dissolution with applied potential/current density allows for narrowing down suitable material choices as replacement for precious group metals as for example, platinum and opens up new ways in finding cost-efficient, active, and stable new-generation electrocatalysts.


Angewandte Chemie | 2018

The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium

Olga Kasian; Jan-Philipp Grote; Simon Geiger; Serhiy Cherevko; Karl Johann Jakob Mayrhofer

Abstract Understanding the pathways of catalyst degradation during the oxygen evolution reaction is a cornerstone in the development of efficient and stable electrolyzers, since even for the most promising Ir based anodes the harsh reaction conditions are detrimental. The dissolution mechanism is complex and the correlation to the oxygen evolution reaction itself is still poorly understood. Here, by coupling a scanning flow cell with inductively coupled plasma and online electrochemical mass spectrometers, we monitor the oxygen evolution and degradation products of Ir and Ir oxides in situ. It is shown that at high anodic potentials several dissolution routes become possible, including formation of gaseous IrO3. On the basis of experimental data, possible pathways are proposed for the oxygen‐evolution‐triggered dissolution of Ir and the role of common intermediates for these reactions is discussed.


Scientific Reports | 2017

Stability limits of tin-based electrocatalyst supports

Simon Geiger; Olga Kasian; Andrea Maria Mingers; Karl Johann Jakob Mayrhofer; Serhiy Cherevko

Tin-based oxides are attractive catalyst support materials considered for application in fuel cells and electrolysers. If properly doped, these oxides are relatively good conductors, assuring that ohmic drop in real applications is minimal. Corrosion of dopants, however, will lead to severe performance deterioration. The present work aims to investigate the potential dependent dissolution rates of indium tin oxide (ITO), fluorine doped tin oxide (FTO) and antimony doped tin oxide (ATO) in the broad potential window ranging from −0.6 to 3.2 VRHE in 0.1 M H2SO4 electrolyte. It is shown that in the cathodic part of the studied potential window all oxides dissolve during the electrochemical reduction of the oxide – cathodic dissolution. In case an oxidation potential is applied to the reduced electrode, metal oxidation is accompanied with additional dissolution – anodic dissolution. Additional dissolution is observed during the oxygen evolution reaction. FTO withstands anodic conditions best, while little and strong dissolution is observed for ATO and ITO, respectively. In discussion of possible corrosion mechanisms, obtained dissolution onset potentials are correlated with existing thermodynamic data.


Catalysis Science & Technology | 2017

Addressing stability challenges of using bimetallic electrocatalysts: the case of gold?palladium nanoalloys

Enrico Pizzutilo; Simon J. Freakley; Simon Geiger; Claudio Baldizzone; Andrea Maria Mingers; Graham J. Hutchings; Karl Johann Jakob Mayrhofer; Serhiy Cherevko

Bimetallic catalysts are known to often provide enhanced activity compared to pure metals, due to their electronic, geometric and ensemble effects. However, applied catalytic reaction conditions may induce re-structuring, metal diffusion and dealloying. This gives rise to a drastic change in surface composition, thus limiting the application of bimetallic catalysts in real systems. Here, we report a study on dealloying using an AuPd bimetallic nanocatalyst (1 : 1 molar ratio) as a model system. The changes in surface composition over time are monitored in situ by cyclic voltammetry, and dissolution is studied in parallel using online inductively coupled plasma mass spectrometry (ICP-MS). It is demonstrated how experimental conditions such as different acidic media (0.1 M HClO4 and H2SO4), different gases (Ar and O2), upper potential limit and scan rate significantly affect the partial dissolution rates and consequently the surface composition. The understanding of these alterations is crucial for the determination of fundamental catalyst activity, and plays an essential role for real applications, where long-term stability is a key parameter. In particular, the findings can be utilized for the development of catalysts with enhanced activity and/or selectivity.


Nature Catalysis | 2018

Atomic-scale insights into surface species of electrocatalysts in three dimensions

Tong Li; Olga Kasian; Serhiy Cherevko; Siyuan Zhang; Simon Geiger; Christina Scheu; Peter J. Felfer; Dierk Raabe; Baptiste Gault; Karl Johann Jakob Mayrhofer

The topmost atomic layers of electrocatalysts determine the mechanism and kinetics of reactions in many important industrial processes, such as water splitting, chlor-electrolysis or fuel cells. Optimizing the performance of electrocatalysts requires a detailed understanding of surface-state changes during the catalytic process, ideally at the atomic scale. Here, we use atom probe tomography to reveal the three-dimensional structure of the first few atomic layers of electrochemically grown iridium oxide, an efficient electrocatalyst for the oxygen evolution reaction. We unveil the formation of confined, non-stoichiometric Ir–O species during oxygen evolution. These species gradually transform to IrO2, providing improved stability but also a decrease in activity. Additionally, electrochemical growth of oxide in deuterated solutions allowed us to trace hydroxy-groups and water molecules present in the regions of the oxide layer that are favourable for the oxygen evolution and iridium dissolution reactions. Overall, we demonstrate how tomography with near-atomic resolution advances the understanding of complex relationships between surface structure, surface state and function in electrocatalysis.Morphological changes in catalyst structure are known to occur during electrocatalysis, and understanding such changes is important to gain insight into the catalytic process. Now, in the case of iridium oxide, these surface changes are probed in atomic-scale detail during the oxygen evolution reaction, and correlated with activity and stability.


Chemsuschem | 2017

Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies

Simon Geiger; Olga Kasian; Andrea Maria Mingers; Shannon S. Nicley; Ken Haenen; Karl Johann Jakob Mayrhofer; Serhiy Cherevko

In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility.


Angewandte Chemie | 2017

Stability and activity of non-noble based catalysts toward the hydrogen evolution reaction - feasible electrocatalysts in acidic medium?

Marc Ledendecker; Jared S. Mondschein; Olga Kasian; Simon Geiger; Daniel Göhl; Max Schalenbach; Aleksandar R. Zeradjanin; Serhiy Cherevko; Raymond E. Schaak; Karl Johann Jakob Mayrhofer

Fundamental understanding of the behavior of non-noble based materials toward the HER is crucial for the successful implementation into practical devices. Through the implementation of a highly sensitive online ICP-MS coupled to a scanning flow cell, an activity and stability protocol for non-noble electrocatalysts is presented. The studied catalysts comprise a range of compositions, including metal carbides (WC), sulfides (MoS2), phosphides (Ni5P4, Co2P), their base metals (W, Ni, Mo, Co) and their activity, stability and degradation behavior was elaborated and compared to platinum. It is shown that the non-noble materials are stable at HER potentials but dissolve substantially when no current is flowing. Through pre- and post-characterization of the catalysts, explanations of their stability (thermodynamics and kinetics) are discussed, challenges for the application in real devices are analyzed, and strategies for circumventing dissolution are suggested.


Nature Materials | 2018

Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes

Firas Faisal; Corinna Stumm; Manon Bertram; Fabian Waidhas; Yaroslava Lykhach; Serhiy Cherevko; Feifei Xiang; Maximilian Ammon; Mykhailo Vorokhta; Břetislav Šmíd; Tomáš Skála; Nataliya Tsud; Armin Neitzel; Klára Beranová; Kevin C. Prince; Simon Geiger; Olga Kasian; Tobias Wähler; Ralf Schuster; M. Alexander Schneider; Vladimír Matolín; Karl Johann Jakob Mayrhofer; Olaf Brummel; Jörg Libuda

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1–3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to ‘electrify’ complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal–support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal–support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.Fundamental understanding of electrocatalysis is key to a transition to renewable energy systems. A strategy to ‘electrify’ complex oxide-based model catalysts is now proposed to explore electrocatalytic reactions in liquid electrolytes.


Nature Catalysis | 2018

The stability number as a metric for electrocatalyst stability benchmarking

Simon Geiger; Olga Kasian; Marc Ledendecker; Enrico Pizzutilo; Andrea Maria Mingers; W.T. Fu; Oscar Diaz-Morales; Z. Z. Li; Tobias Oellers; L. Fruchter; Alfred Ludwig; Karl Johann Jakob Mayrhofer; Marc T. M. Koper; Serhiy Cherevko

Reducing the noble metal loading and increasing the specific activity of the oxygen evolution catalysts are omnipresent challenges in proton-exchange-membrane water electrolysis, which have recently been tackled by utilizing mixed oxides of noble and non-noble elements. However, proper verification of the stability of these materials is still pending. Here we introduce a metric to explore the dissolution processes of various iridium-based oxides, defined as the ratio between the amounts of evolved oxygen and dissolved iridium. The so-called stability number is independent of loading, surface area or involved active sites and provides a reasonable comparison of diverse materials with respect to stability. The case study on iridium-based perovskites shows that leaching of the non-noble elements in mixed oxides leads to the formation of highly active amorphous iridium oxide, the instability of which is explained by the generation of short-lived vacancies that favour dissolution. These insights are meant to guide further research, which should be devoted to increasing the utilization of highly durable pure crystalline iridium oxide and finding solutions to stabilize amorphous iridium oxides.The proper verification of the stability of metal oxide catalysts for water electrolysis in acid electrolyte remains unresolved. Here, the ‘stability number’ is introduced to evaluate the dissolution mechanisms of various iridium-based oxides and to facilitate benchmarking of catalysts independent of loading, surface area or involved active sites.

Collaboration


Dive into the Simon Geiger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serhiy Cherevko

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge