Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Geir Møller is active.

Publication


Featured researches published by Simon Geir Møller.


Nature Biotechnology | 2001

Chemical-regulated, site-specific DNA excision in transgenic plants

Jianru Zuo; Qi-Wen Niu; Simon Geir Møller; Nam-Hai Chua

We have developed a chemical-inducible, site-specific DNA excision system in transgenic Arabidopsis plants mediated by the Cre/loxP DNA recombination system. Expression of the Cre recombinase was tightly controlled by an estrogen receptor-based fusion transactivator XVE. Upon induction by β-estradiol, sequences encoding the selectable marker, Cre, and XVE sandwiched by two loxP sites were excised from the Arabidopsis genome, leading to activation of the downstream GFP (green fluorescent protein) reporter gene. Genetic and molecular analyses indicated that the system is tightly controlled, showing high-efficiency inducible DNA excision in all 19 transgenic events tested with either single or multiple T-DNA insertions. The system provides a highly reliable method to generate marker-free transgenic plants after transformation through either organogenesis or somatic embryogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants

Nicolas Bouché; Aaron Fait; David Bouchez; Simon Geir Møller; Hillel Fromm

The γ-aminobutyrate (GABA) shunt is a metabolic pathway that bypasses two steps of the tricarboxylic acid cycle, and it is present in both prokaryotes and eukaryotes. In plants the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase and the mitochondrial enzymes GABA transaminase and succinic-semialdehyde dehydrogenase (SSADH). The activity of the GABA shunt in plants is rapidly enhanced in response to various biotic and abiotic stresses. However the physiological role of this pathway remains obscure. To elucidate its role in plants, we analyzed Arabidopsis T-DNA knockout mutants of SSADH, the ultimate enzyme of the pathway. Four alleles of the ssadh mutation were isolated, and these exhibited a similar phenotype. When exposed to white light (100 μmol of photons per m2 per s), they appear dwarfed with necrotic lesions. Detailed spectrum analysis revealed that UV-B has the most adverse effect on the mutant phenotype, whereas photosynthetic active range light has a very little effect. The ssadh mutants are also sensitive to heat, as they develop necrosis when submitted to such stress. Moreover, both UV and heat cause a rapid increase in the levels of hydrogen peroxide in the ssadh mutants, which is associated with enhanced cell death. Surprisingly, our study also shows that trichomes are hypersensitive to stresses in ssadh mutants. Our work establishes a role for the GABA shunt in preventing the accumulation of reactive oxygen intermediates and cell death, which appears to be essential for plant defense against environmental stress.


EMBO Reports | 2007

ARC3 is a stromal Z‐ring accessory protein essential for plastid division

Jodi Maple; Lea Vojta; Jürgen Soll; Simon Geir Møller

In plants, chloroplast division is an integral part of development, and these vital organelles arise by binary fission from pre‐existing cytosolic plastids. Chloroplasts arose by endosymbiosis and although they have retained elements of the bacterial cell division machinery to execute plastid division, they have evolved to require two functionally distinct forms of the FtsZ protein and have lost elements of the Min machinery required for Z‐ring placement. Here, we analyse the plastid division component accumulation and replication of chloroplasts 3 (ARC3) and show that ARC3 forms part of the stromal plastid division machinery. ARC3 interacts specifically with AtFtsZ1, acting as a Z‐ring accessory protein and defining a unique function for this family of FtsZ proteins. ARC3 is involved in division site placement, suggesting that it might functionally replace MinC, representing an important advance in our understanding of the mechanism of chloroplast division and the evolution of the chloroplast division machinery.


The Plant Cell | 2003

The Novel MYB Protein EARLY-PHYTOCHROME-RESPONSIVE1 Is a Component of a Slave Circadian Oscillator in Arabidopsis

Norihito Kuno; Simon Geir Møller; Tomoko Shinomura; Xiang Ming Xu; Nam-Hai Chua; Masaki Furuya

Using fluorescent differential display, we identified, from ∼8000 displayed bands, a DNA fragment showing rapid induction in response to red light irradiation. This EARLY-PHYTOCHROME-RESPONSIVE1 gene (EPR1) encodes a novel nucleus-localized MYB protein harboring a single MYB domain that is highly similar to the circadian oscillator proteins CCA1 and LHY. EPR1 is regulated by both phytochrome A and phytochrome B, and the red-light induction of EPR1 is not inhibited by cycloheximide, demonstrating that EPR1 represents a primary phytochrome-responsive gene. Our results show that EPR1 overexpression results in enhanced far-red light–induced cotyledon opening and delayed flowering. In wild-type Arabidopsis plants grown in continuous light, the EPR1 transcript exhibits circadian rhythmicity similar to that of CCA1 and LHY. Moreover, EPR1 suppresses its own expression, suggesting that this protein is part of a regulatory feedback loop. Constitutive expression of CCA1 and LHY results in the loss of EPR1 rhythmicity, whereas increased levels of EPR1 have no effect on the central oscillator. We propose that EPR1 is a component of a slave oscillator that contributes to the refinement of output pathways, ultimately mediating the correct oscillatory behavior of target genes.


The Plant Cell | 2003

PP7 Is a Positive Regulator of Blue Light Signaling in Arabidopsis

Simon Geir Møller; Youn-Sung Kim; Tim Kunkel; Nam-Hai Chua

The cryptochrome blue light photoreceptors mediate various photomorphogenic responses in plants, including hypocotyl elongation, cotyledon expansion, and control of flowering time. The molecular mechanism of cryptochrome function in Arabidopsis is becoming increasingly clear, with recent studies showing that both CRY1 and CRY2 are localized in the nucleus and that CRY2 is regulated by blue light–dependent phosphorylation. Despite these advances, no positive cryptochrome signaling component has been identified to date. Here, we demonstrate that a novel Ser/Thr protein phosphatase (AtPP7) with high sequence similarity to the Drosophila retinal degeneration C protein phosphatase acts as an intermediate in blue light signaling. Transgenic Arabidopsis seedlings with reduced AtPP7 expression levels exhibit loss of hypocotyl growth inhibition and display limited cotyledon expansion in response to blue light irradiation. These effects are as striking as those seen in hy4 mutant seedlings, which are deficient in CRY1. We further demonstrate that AtPP7 transcript levels are not rate limiting and that AtPP7 probably acts downstream of cryptochrome in the nucleus, ensuring signal flux through the pathway. Based on our findings and recent data regarding cryptochrome action, we propose that AtPP7 acts as a positive regulator of cryptochrome signaling in Arabidopsis.


Journal of Biological Chemistry | 2005

AtNAP1 Represents an Atypical SufB Protein in Arabidopsis Plastids

Xiang Ming Xu; Sally Adams; Nam-Hai Chua; Simon Geir Møller

The assembly of iron-sulfur (Fe-S) clusters involves several pathways and in prokaryotes the mobilization of the sulfur (SUF) system is paramount for Fe-S biogenesis and repair during oxidative stress. The prokaryotic SUF system consists of six proteins: SufC is an ABC/ATPase that forms a complex with SufB and SufD, SufA acts as a scaffold protein, and SufE and SufS are involved in sulfur mobilization from cysteine. Despite the importance of Fe-S proteins in higher plant plastids, little is known regarding plastidic Fe-S cluster assembly. We have recently shown that Arabidopsis harbors an evolutionary conserved plastidic SufC protein (AtNAP7) capable of hydrolyzing ATP and interacting with the SufD homolog AtNAP6. Based on this and the prokaryotic SUF system we speculated that a SufB-like protein may exist in plastids. Here we demonstrate that the Arabidopsis plastid-localized SufB homolog AtNAP1 can complement SufB deficiency in Escherichia coli during oxidative stress. Furthermore, we demonstrate that AtNAP1 can interact with AtNAP7 inside living chloroplasts suggesting the presence of a plastidic AtNAP1·AtNAP6·AtNAP7 complex and remarkable evolutionary conservation of the SUF system. However, in contrast to prokaryotic SufB proteins with no associated ATPase activity we show that AtNAP1 is an iron-stimulated ATPase and that AtNAP1 is capable of forming homodimers. Our results suggest that AtNAP1 represents an atypical plastidic SufB-like protein important for Fe-S cluster assembly and for regulating iron homeostasis in Arabidopsis.


Molecular Plant-microbe Interactions | 1997

Continual Green-Fluorescent Protein Monitoring of Cauliflower Mosaic Virus 35S Promoter Activity in Nematode-Induced Feeding Cells in Arabidopsis thaliana

Peter E. Urwin; Simon Geir Møller; Catherine J. Lilley; Michael J. McPherson; Howard J. Atkinson

The responsiveness of the cauliflower mosaic virus 35S promoter in feeding sites developed by both sexes of Heterodera schachtii and female Meloidogyne incognita has been studied. The objective was to establish the value of green-fluorescent protein (GFP) as a nondestructive reporter gene system for characterizing promoter activity at nematode feeding sites in vivo. Growth units were devised that allowed individual feeding sites in roots of Arabidopsis thaliana to be observed by both bright-field and epifluorescent illumination. Changes in GFP expression were visually observed under experimental conditions that resulted in chloroplast formation in syncytia but not other root cells. Changes in GFP levels altered the extent of quenching, by this protein, of red light emitted by chlorophyll within the chloroplasts under violet excitation. Image analysis provided a semiquantitative basis for simultaneous measurement of changes in GFP fluorescence and the unquenched emission by chlorophyll. GFP levels were constant in cells surrounding the syncytium induced by H. schachtii, but they fell progressive from 10 to 35 days postinfection within this structure. Significant reduction in GFP levels was not limited to the early part of the time course but also occurred between 27 and 35 days postinfection. GFP was detected by immunoblotting in females of M. incognita but not in H. schachtii parasitizing similar GFP-expressing roots.


Journal of Cell Science | 2004

Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis

Makoto T. Fujiwara; Ayako Nakamura; Ryuuichi D. Itoh; Yukihisa Shimada; Shigeo Yoshida; Simon Geir Møller

Chloroplast division is mediated by the coordinated action of a prokaryote-derived division system(s) and a host eukaryote-derived membrane fission system(s). The evolutionary conserved prokaryote-derived system comprises several nucleus-encoded proteins, two of which are thought to control division site placement at the midpoint of the organelle: a stromal ATPase MinD and a topological specificity factor MinE. Here, we show that arc11, one of 12 recessive accumulation and replication of chloroplasts (arc) mutants in Arabidopsis, contains highly elongated and multiple-arrayed chloroplasts in developing green tissues. Genomic sequence analysis revealed that arc11 contains a missense mutation in α-helix 11 of the chloroplast-targeted AtMinD1 changing an Ala at position 296 to Gly (A296G). Introduction of wild-type AtMinD1 restores the chloroplast division defects of arc11 and quantitative RT-PCR analysis showed that the degree of complementation was highly dependent on transgene expression levels. Overexpression of the mutant ARC11/AtMinD1 in transgenic plants results in the inhibition of chloroplast division, showing that the mutant protein has retained its division inhibition activity. However, in contrast to the defined and punctate intraplastidic localization patterns of an AtMinD1-YFP fusion protein, the single A296G point mutation in ARC11/AtMinD1 results in aberrant localization patterns inside chloroplasts. We further show that AtMinD1 is capable of forming homodimers and that this dimerization capacity is abolished by the A296G mutation in ARC11/AtMinD1. Our data show that arc11 is a loss-of-function mutant of AtMinD1 and suggest that the formation of functional AtMinD1 homodimers is paramount for appropriate AtMinD1 localization, ultimately ensuring correct division machinery placement and chloroplast division in plants.


The EMBO Journal | 2006

AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis

Xiang Ming Xu; Simon Geir Møller

Iron–sulfur (Fe–S) clusters are vital prosthetic groups for Fe–S proteins involved in fundamental processes such as electron transfer, metabolism, sensing and signaling. In plants, sulfur (SUF) protein‐mediated Fe–S cluster biogenesis involves iron acquisition and sulfur mobilization, processes suggested to be plastidic. Here we have shown that AtSufE in Arabidopsis rescues growth defects in SufE‐deficient Escherichia coli. In contrast to other SUF proteins, AtSufE localizes to plastids and mitochondria interacting with the plastidic AtSufS and mitochondrial AtNifS1 cysteine desulfurases. AtSufE activates AtSufS and AtNifS1 cysteine desulfurization, and AtSufE activity restoration in either plastids or mitochondria is not sufficient to rescue embryo lethality in AtSufE loss‐of‐function mutants. AtSufE overexpression induces AtSufS and AtNifS1 expression, which in turn leads to elevated cysteine desulfurization activity, chlorosis and retarded development. Our data demonstrate that plastidic and mitochondrial Fe–S cluster biogenesis shares a common, essential component, and that AtSufE acts as an activator of plastidic and mitochondrial desulfurases in Arabidopsis.


Journal of Cell Science | 2010

The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation

Xiang Ming Xu; Hong Lin; Jodi Maple; Benny Björkblom; Guido Alves; Jan Petter Larsen; Simon Geir Møller

Mutations in the DJ-1 gene (also known as PARK7) cause inherited Parkinsons disease, which is characterized by neuronal death. Although DJ-1 is thought to be an antioxidant protein, the underlying mechanism by which loss of DJ-1 function contributes to cell death is unclear. Human DJ-1 and its Arabidopsis thaliana homologue, AtDJ-1a, are evolutionarily conserved proteins, indicating a universal function. To gain further knowledge of the molecular features associated with DJ-1 dysfunction, we have characterized AtDJ-1a. We show that AtDJ-1a levels are responsive to stress treatment and that AtDJ-1a loss of function results in accelerated cell death in aging plants. By contrast, transgenic plants with elevated AtDJ-1a levels have increased protection against environmental stress conditions, such as strong light, H2O2, methyl viologen and copper sulfate. We further identify superoxide dismutase 1 (SOD1) and glutathione peroxidase 2 (GPX2) as interaction partners of both AtDJ-1a and human DJ-1, and show that this interaction results in AtDJ-1a- and DJ-1-mediated cytosolic SOD1 activation in a copper-dependent fashion. Our data have highlighted a conserved molecular mechanism for DJ-1 and revealed a new protein player in the oxidative stress response of plants.

Collaboration


Dive into the Simon Geir Møller's collaboration.

Top Co-Authors

Avatar

Jodi Maple

University of Stavanger

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Alves

Stavanger University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge