Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon H. Slight is active.

Publication


Featured researches published by Simon H. Slight.


Veterinary Clinics of North America-equine Practice | 2002

Glucocorticoids and laminitis in the horse

Philip J. Johnson; Simon H. Slight; Venkataseshu K. Ganjam; John M. Kreeger

The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically foundered hoof in some respects. Further investigation into the effect of GC on the hoof lamellar interface is clearly needed.


Biochimica et Biophysica Acta | 1990

Glycation of lens proteins by the oxidation products of ascorbic acid

Simon H. Slight; Milton S. Feather; B.J. Ortwerth

Bovine lens water-soluble proteins were incubated with [I-14C]ascorbic acid (ASA) for 6 days, and the incorporation into protein was measured at daily intervals. Aliquots were also withdrawn to determine the distribution of label among the various ASA oxidation products. A linear incorporation into protein was observed in the presence of NaCNBH3, however, little or no incorporation was seen in its absence. TLC analysis showed a complete loss of ASA by day 3, whereas both dehydroascorbate (DHA) and diketogulonic acid (DKG) remained constant for 6 days, consistent with the linear incorporation into protein. The amino acid composition of the proteins glycated in the presence of NaCNBH3 was identical to controls except for a 70% reduction in lysine residues and a corresponding increase in an unknown product which eluted slightly earlier than methionine. In the absence of NaCNBH3 lysine decreased linearly to 20% with an additional decrease in arginine and histidine at later times concurrent with protein crosslinking. DHA and DKG were prepared and incubated directly with lens proteins for an 8 day period. Both compounds glycated lens protein as evidenced by an increased binding to a boronate affinity column. SDS-PAGE showed that both compounds were also capable of causing protein crosslinking. DHA is apparently capable of reacting directly with protein since glycation was observed with the ASA analog, reductic acid, which can be oxidized to dehydroreductic acid, but which cannot be hydrolyzed to an open chain structure. DHA also produced a lysine adduct which was not obtained with DKG, supporting the idea that both species have glycating ability.


Biochimica et Biophysica Acta | 1992

Site-specific glycation of lens crystallins by ascorbic acid

B.J. Ortwerth; Simon H. Slight; Malladi Prabhakaram; Yiping Sun; Jean B. Smith

The oxidation of ascorbic acid leads to the formation of several compounds which are capable of reacting with protein amino groups via a Maillard reaction. Radioactivity from [1-14C]ascorbic acid was linearly incorporated into lens crystallins over a 10 day period in the presence of NaCNBH3. This rate of incorporation was 6-7-fold more rapid than that obtained with [14C]glucose under the same conditions. SDS-PAGE showed a linear incorporation into all the crystallin subunits. [1-14C]Ascorbic acid-label led alpha-crystallin was separated into its component A and B subunits, and each was digested with chymotrypsin. HPLC peptide analysis showed a differential labelling of the various lysine residues. Analysis of the peptides by mass spectrometry allowed the identification of the sites and the extent of modification. These values ranged from 6% for Lys-78 to 36% for Lys-11 in the A subunit and from 5% for Lys-82 to an average of 38% for the peptide containing Lys-166, Lys-174 and Lys-175 in the B subunit. Amino acid analysis demonstrated a single modification reaction producing N epsilon-(carboxymethyl)lysine. This agreed with the mass increase of 58 observed for each modified peptide.


Equine Veterinary Journal | 2010

Tissue-specific dysregulation of cortisol metabolism in equine laminitis

Philip J. Johnson; Venkataseshu K. Ganjam; Simon H. Slight; John M. Kreeger; Nat T. Messer

REASONS FOR PERFORMING STUDY The role of glucocorticoids (GCs) in the pathogenesis of laminitis is incompletely understood. Local tissue activity of GC is regulated by the steroid converting enzyme, 11beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1). Changes in integumentary (skin and hoof lamellar) 11beta-HSD activity occurring during laminitis could affect the extent to which GCs are involved in its development. HYPOTHESIS That changes in integumentary 11beta-HSD-1 activity associated with the laminitic condition would lead to elevated local tissue levels of GCs, which could subsequently contribute, through paracrine and autocrine mechanisms, to the further development of laminitis; and that similar changes in 11beta-HSD-1 activity would be evident in both skin and hoof lamellar tissue. METHODS Activity of 11beta-HSD-1 was determined in skin and hoof lamellar tissue specimens obtained from normal and laminitic horses using a radiometric assay. Skin samples were obtained from 10 normal horses and from 10 horses before and after induction of acute laminitis following administration of starch via nasogastric tube. Hoof lamellar samples were obtained from 10 normal horses, 10 horses following induction of acute laminitis and 4 chronically-foundered horses. Bidirectional 11beta-HSD-1 activity was measured in both skin and lamellar tissues. RESULTS 11-ketoreductase activity exceeded 11beta-dehydrogenase activity in both skin and lamellar tissues. Cutaneous activity was higher than lamellar 11beta-HSD-1 activity in all groups. Both ketoreductase and dehydrogenase activity increased in skin and lamellae following experimental induction of acute laminitis, but the increase in ketoreductase activity was substantially greater than that for dehydrogenase in the lamellae. Induction of acute laminitis was attended by increases of 227 and 220% in cutaneous dehydrogenase and ketoreductase activity, respectively, and 173 and 398% in lamellar dehydrogenase and ketoreductase activity, respectively (P<0.05). CONCLUSIONS The 11-ketoreductase moiety of 11beta-HSD-1 plays a role in equine skin and hoof lamellae regarding the regulation of local glucocorticoid activity. Increased 11-ketoreductase activity will lead to increased local tissue GC activity by virtue of conversion of cortisone to cortisol. POTENTIAL RELEVANCE The laminitic condition is attended by integumentary biochemical changes that enhance the local concentration of cortisol, especially in the hoof lamellar interface. Through multiple and diverse actions, increased local GC activity contributes to the pathogenesis and morbidity associated with laminitis. Pharmacological manipulation of 11beta-HSD-1 deserves further investigation regarding the prevention and treatment of laminitis.


Steroids | 1995

Chronic mineralocorticoid excess and cardiovascular remodeling

Karl T. Weber; Yao Sun; Scott E. Campbell; Simon H. Slight; Venkataseshu K. Ganjam; George T. Griffing; Ronald W. Swinfard; Alberto A. Diaz-Arias

Chronic mineralocorticoid (MC) excess, whether due to elevated plasma aldosterone (ALDO) or deoxycorticosterone (DOC), is associated with a perivascular fibrosis of systemic and coronary arterioles. This remodeling of resistance vessels contributes to the appearance of hypertension. Chronic MC excess is also accompanied by cardiac myocyte necrosis, secondary to myocardial potassium depletion, and a subsequent reparative fibrosis that appears in the normotensive, nonhypertrophied right and hypertensive, hypertrophied left ventricles. Fibrosis contributes to the appearance of ventricular arrhythmias and dysfunction. Herein, clinical and experimental evidence linking chronic, inappropriate (relative to dietary sodium) elevations in circulating ALDO and DOC with these reactive and reparative forms of fibrous tissue formation in the heart and other tissues is presented.


Molecular and Cellular Biochemistry | 1998

Inhibition of tissue repair by spironolactone: Role of mineralocorticoids in fibrous tissue formation

Simon H. Slight; Vijay K. Chilakamarri; Samar Nasr; Arvinder K. Dhalla; Felix J.A. Ramires; Yao Sun; Venkataseshu K. Ganjam; Karl T. Weber

Mineralocorticoids have been implicated in promoting fibrous tissue formation in various organs. In the present study, we sought to address the potential contribution of mineralocorticoids to fibrous tissue formation using a skin pouch model which has proved valuable for the analysis of inflammatory and wound healing responses. Skin pouches were induced in rats by administration of a phorbol ester, croton oil (0.5 ml of a 1% solution). After 2 weeks, rats were killed and intact pouch tissue collected. Pouch weights of control and aldosterone-treated (0.75 μg/h via osmotic minipump) rats were similar (3.33 ± 0.44 g vs. 3.70 ± 0.28 g respectively). However, pouch weights were reduced by more than 50% in spironolactone-treated (25 mg/day powdered in food) animals (1.62 ± 0.22 g and 1.27 ± 0.23 g respectively in aldosterone and spironolactone alone groups). To ascertain the effects of different treatments on collagen accumulation, hydroxyproline concentration was measured. Compared with controls, hydroxyproline concentration was significantly reduced following spironolactone treatment (17.1 ± 0.08 vs. 7.5 ± 2.0 μg/mg dry wt, respectively, p < 0.01). This response to spironolactone was negated by coadministration of aldosterone (hydroxyproline concentration was 18.6 ± 2.1 μg/mg dry wt). Following bilateral adrenalectomy, spironolactone reduced pouch weight and hydroxyproline concentration, which was not the case for adrenalectomy alone. Two week aldosterone administration in uninephrectomized rats on high salt diet was deemed ineffective in modulating pouch development (pouch wet wts were 3.48 ± 0.4 g vs. 3.00 ± 0.19 g in controls and aldosterone-treated rats, respectively). Mineralocorticoid receptor expression in pouch tissue was demonstrated by RT/PCR. Furthermore, NADP+-dependent 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity was detected in pouch tissue, together with lower levels of NAD+-dependent 11β-HSD2. Spironolactone (p < 0.05) significantly reduced 11β-HSD1 activity compared with controls. Thus, fibrous tissue possesses requisite components of MC action, and antagonism of mineralocorticoid receptors by spironolactone attenuates its formation. Pouch formation is under the influence of circulating MC and, we would like to propose, is also mediated through corticosteroids generated de novo at the site of tissue repair.


Biochimica et Biophysica Acta | 1992

The extent of Nϵ-(carboxymethyl)lysine formation in lens proteins and polylysine by the autoxidation products of ascorbic acid

Simon H. Slight; Malladi Prabhakaram; Dong Bum Shin; Milton S. Feather; B.J. Ortwerth

The autoxidation of ascorbic acid (ASA) leads to the formation of compounds which are capable of glycating and crosslinking proteins in vitro. When the soluble crystallins from bovine lens were incubated with ASA in the presence of sodium cyanoborohydride, a single major adduct was observed, whose appearance correlated with the loss of lysine. When polylysine was reacted with equivalent amounts of ASA under the same conditions, this product represented half of the total lysine content after four weeks of incubation at 37 degrees C. This adduct was isolated and identified as N epsilon-(carboxymethyl)lysine (CML) by TLC, GC/MS and amino acid analysis. Several oxidation products of ASA were each reacted with polylysine in the presence of sodium cyanoborohydride to identify the reactive species. CML was the major adduct formed with either ASA and dehydroascorbic acid (DHA). Markedly diminished amounts were seen with L-2,3-diketogulonic acid (DKG), and L-threose, while no CML was formed with L-threo-pentos-2-ulose (L-xylosone). In the absence of sodium cyanoborohydride the yield of CML was similar with each of the ASA autoxidation products and required oxygen. Reactions with [1-14C]ASA gave rise to [14C]CML, but only with NaCNBH3 present. At least two routes of CML formation appear to be operating depending upon whether NaCNBH3 is present to reduce the putative Schiff base formed between lysine and DHA.


Journal of Endocrinological Investigation | 1995

Vascular remodeling and mineralocorticoids

Karl T. Weber; Yao Sun; Scott E. Campbell; Simon H. Slight; Venkataseshu K. Ganjam

Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury — a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.


Journal of Molecular and Cellular Cardiology | 1999

Extra-adrenal Mineralocorticoids and Cardiovascular Tissue☆☆☆

Simon H. Slight; Jacob Joseph; Venkataseshu K. Ganjam; Karl T. Weber


Journal of Molecular and Cellular Cardiology | 1996

High Affinity NAD+-dependent 11β-hydroxysteroid Dehydrogenase in the Human Heart☆

Simon H. Slight; Venkataseshu K. Ganjam; Celso E. Gomez-Sanchez; Ming-Yi Zhou; Karl T. Weber

Collaboration


Dive into the Simon H. Slight's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Sun

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge