Simon J. Waddell
Brighton and Sussex Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon J. Waddell.
Science | 2009
Vadim Makarov; Giulia Manina; Katarína Mikušová; Ute Möllmann; Olga Ryabova; Brigitte Saint-Joanis; Neeraj Dhar; Maria Rosalia Pasca; Silvia Buroni; Anna Paola Lucarelli; Anna Milano; Edda De Rossi; Martina Belanová; Adela Bobovská; Petronela Dianišková; Jana Korduláková; Claudia Sala; Elizabeth Fullam; Patricia Schneider; John D. McKinney; Priscille Brodin; Thierry Christophe; Simon J. Waddell; Philip D. Butcher; Jakob Albrethsen; Ida Rosenkrands; Roland Brosch; Vrinda Nandi; Sheshagiri Gaonkar; Radha Shandil
Ammunition for the TB Wars Tuberculosis is a major human disease of global importance resulting from infection with the air-borne pathogen Mycobacterium tuberculosis, which is becoming increasingly resistant to all available drugs. An antituberculosis benzothiazinone compound kills mycobacterium in infected cells and in mice. Makarov et al. (p. 801) have identified a sulfur atom and nitro residues important for benzothiazinones activity and used genetic methods and biochemical analysis to identify its target in blocking arabinogalactan biosynthesis during cell-wall synthesis. The compound affects the same pathway as ethambutol, and thus a benzothiazinone drug has the potential to become an important part of treatment of drug-resistant disease and, possibly, replace the less effective ethambutol in the primary treatment of tuberculosis. An isomerase required for cell-wall synthesis is a target for an alternative drug lead for tuberculosis treatment. New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.
PLOS Medicine | 2008
Natalie J. Garton; Simon J. Waddell; Anna L Sherratt; Su-Min Lee; Rebecca J. Smith; Claire Senner; Jason Hinds; Kumar Rajakumar; Richard A. Adegbola; Gurdyal S. Besra; Philip D. Butcher; Michael R. Barer
Background Tuberculous sputum provides a sample of bacilli that must be eliminated by chemotherapy and that may go on to transmit infection. A preliminary observation that Mycobacterium tuberculosis cells contain triacylglycerol lipid bodies in sputum, but not when growing in vitro, led us to investigate the extent of this phenomenon and its physiological basis. Methods and Findings Microscopy-positive sputum samples from the UK and The Gambia were investigated for their content of lipid body–positive mycobacteria by combined Nile red and auramine staining. All samples contained a lipid body–positive population varying from 3% to 86% of the acid-fast bacilli present. The recent finding that triacylglycerol synthase is expressed by mycobacteria when they enter in vitro nonreplicating persistence led us to investigate whether this state was also associated with lipid body formation. We found that, when placed in laboratory conditions inducing nonreplicating persistence, two M. tuberculosis strains had lipid body levels comparable to those found in sputum. We investigated these physiological findings further by comparing the M. tuberculosis transcriptome of growing and nonreplicating persistence cultures with that obtained directly from sputum samples. Although sputum has traditionally been thought to contain actively growing tubercle bacilli, our transcript analyses refute the hypothesis that these cells predominate. Rather, they reinforce the results of the lipid body analyses by revealing transcriptional signatures that can be clearly attributed to slowly replicating or nonreplicating mycobacteria. Finally, the lipid body count was highly correlated (R2 = 0.64, p < 0.03) with time to positivity in diagnostic liquid cultures, thereby establishing a direct link between this cytological feature and the size of a potential nonreplicating population. Conclusion As nonreplicating tubercle bacilli are tolerant to the cidal action of antibiotics and resistant to multiple stresses, identification of this persister-like population of tubercle bacilli in sputum presents exciting and tractable new opportunities to investigate both responses to chemotherapy and the transmission of tuberculosis.
PLOS ONE | 2008
Ludovic Tailleux; Simon J. Waddell; Mattia Pelizzola; Alessandra Mortellaro; Michael Withers; Antoine Tanne; Paola Ricciardi Castagnoli; Brigitte Gicquel; Neil G. Stoker; Philip D. Butcher; Maria Foti; Olivier Neyrolles
Background Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells. Methodology/Principal Findings In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification. Conclusions/Significance This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.
Cell Host & Microbe | 2011
Hélène Botella; Pascale Peyron; Florence Levillain; Renaud Poincloux; Yannick Poquet; Irène Brandli; Chuan Wang; Ludovic Tailleux; Sylvain Tilleul; Guillaume M. Charrière; Simon J. Waddell; Maria Foti; Geanncarlo Lugo-Villarino; Qian qian Gao; Isabelle Maridonneau-Parini; Philip D. Butcher; Paola Ricciardi Castagnoli; Brigitte Gicquel; Chantal de Chastellier; Olivier Neyrolles
Summary Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this pattern of gene modulation, we observed a burst of free zinc inside macrophages, and intraphagosomal zinc accumulation within a few hours postinfection. Zinc exposure led to rapid CtpC induction, and ctpC deficiency caused zinc retention within the mycobacterial cytoplasm, leading to impaired intracellular growth of the bacilli. Thus, the use of P1-type ATPases represents a M. tuberculosis strategy to neutralize the toxic effects of zinc in macrophages. We propose that heavy metal toxicity and its counteraction might represent yet another chapter in the host-microbe arms race.
PLOS ONE | 2010
Simon J. Waddell; Stephen J. Popper; Kathleen H. Rubins; Michael Griffiths; Patrick O. Brown; Michael Levin; David A. Relman
Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles. We used human cDNA microarrays to (1) compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs) elicited by 6 major mediators of the immune response: interferons α, β, ω and γ, IL12 and TNFα; and (2) characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes) to IFNγ stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNγ and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFα stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNγ, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings.
PLOS ONE | 2010
Alice H. Li; Simon J. Waddell; Jason Hinds; Chad A. Malloff; Manjeet Bains; Robert E. W. Hancock; Wan L. Lam; Philip D. Butcher; Richard W. Stokes
Background H37Rv and H37Ra are well-described laboratory strains of Mycobacterium tuberculosis derived from the same parental strain, H37, that show dramatically different pathogenic phenotypes. Methodology/Principal Findings In this study, the transcriptomes of the two strains during axenic growth in broth and during intracellular growth within murine bone-marrow macrophages were compared by whole genome expression profiling. We identified and compared adaptations of either strain upon encountering an intracellular environment, and also contrasted the transcriptomes of the two strains while inside macrophages. In the former comparison, both strains induced genes that would facilitate intracellular survival including those involved in mycobactin synthesis and fatty acid metabolism. However, this response was stronger and more extensive for H37Rv than for H37Ra. This was manifested as the differential expression of a greater number of genes and an increased magnitude of expression for these genes in H37Rv. In comparing intracellular transcriptional signatures, fifty genes were found to be differentially expressed between the strains. Of these fifty, twelve were under control of the PhoPR regulon. Further differences between strains included genes whose products were members of the ESAT-6 family of proteins, or were associated with their secretion. Conclusions/Significance Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra.
Current Molecular Medicine | 2007
Simon J. Waddell; Philip D. Butcher
Analysis of the changing mRNA expression profile of Mycobacterium tuberculosis though the course of infection promises to advance our understanding of how mycobacteria are able to survive the host immune response. The difficulties of sample extraction from distinct mycobacterial populations, and of measuring mRNA expression profiles of multiple genes has limited the impact of gene expression studies on our interpretation of this dynamic infection process. The development of whole genome microarray technology together with advances in sample collection have allowed the expression pattern of the whole M. tuberculosis genome to be compared across a number of different in vitro conditions, murine and human tissue culture models and in vivo infection samples. This review attempts to produce a summative model of the M. tuberculosis response to infection derived from or reflected in these gene expression datasets. The mycobacterial response to the intracellular environment is characterised by the utilisation of lipids as a carbon source and the switch from aerobic/microaerophilic to anaerobic respiratory pathways. Other genes induced in the macrophage phagosome include those likely to be involved in the maintenance of the cell wall and genes related to DNA damage, heat shock, iron sequestration and nutrient limitation. The comparison of transcriptional data from in vitro models of infection with complex in vivo samples, together with the use of bacterial RNA amplification strategies to sample defined populations of bacilli, should allow us to make conclusions about M. tuberculosis physiology and host microenvironments during natural infection.
American Journal of Respiratory and Critical Care Medicine | 2011
Nazima Pathan; Margarita Burmester; Tanja Adamovic; Maurice Berk; Keng Wooi Ng; Helen Betts; Duncan Macrae; Simon J. Waddell; Mark J. Paul-Clark; Rosamund Nuamah; Charles A. Mein; Michael Levin; Giovanni Montana; Jane A. Mitchell
RATIONALE Children with congenital heart disease are at risk of gut barrier dysfunction and translocation of gut bacterial antigens into the bloodstream. This may contribute to inflammatory activation and organ dysfunction postoperatively. OBJECTIVES To investigate the role of intestinal injury and endotoxemia in the pathogenesis of organ dysfunction after surgery for congenital heart disease. METHODS We analyzed blood levels of intestinal fatty acid binding protein and endotoxin (endotoxin activity assay) alongside global transcriptomic profiling and assays of monocyte endotoxin receptor expression in children undergoing surgery for congenital heart disease. MEASUREMENTS AND MAIN RESULTS Levels of intestinal fatty acid binding protein and endotoxin were greater in children with duct-dependent cardiac lesions. Endotoxemia was associated with severity of vital organ dysfunction and intensive care stay. We identified activation of pathogen-sensing, antigen-processing, and immune-suppressing pathways at the genomic level postoperatively and down-regulation of pathogen-sensing receptors on circulating immune cells. CONCLUSIONS Children undergoing surgery for congenital heart disease are at increased risk of intestinal mucosal injury and endotoxemia. Endotoxin activity correlates with a number of outcome variables in this population, and may be used to guide the use of gut-protective strategies.
Genome Biology | 2007
Ben Sidders; Mike Withers; Sharon L. Kendall; Joanna Bacon; Simon J. Waddell; Jason Hinds; Farahnaz Movahedzadeh; Robert A. Cox; Rosangela Frita; Annemieke ten Bokum; Lorenz Wernisch; Neil G. Stoker
We describe an analysis, applicable to any spotted microarray dataset produced using genomic DNA as a reference, that quantifies prokaryotic levels of mRNA on a genome-wide scale. Applying this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of expression and biological importance, define the complement of invariant genes and analyze absolute levels of expression by functional class to develop ways of understanding an organisms biology without comparison to another growth condition.
Letters in Applied Microbiology | 2005
Simon J. Waddell; G.A. Chung; K.J.C. Gibson; Martin J. Everett; D.E. Minnikin; Gurdyal S. Besra; Philip D. Butcher
Aims: Phthiocerol dimycocerosate (PDIM) waxes and other lipids are necessary for successful Mycobacterium tuberculosis infection, although the exact role of PDIM in host‐pathogen interactions remains unclear. In this study, we investigated the contribution of tesA, drrB, pks6 and pks11 genes in complex lipid biosynthesis in M. tuberculosis.