Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Kollnberger is active.

Publication


Featured researches published by Simon Kollnberger.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties.

Eva Billerbeck; Yu-Hoi Kang; Lucy J. Walker; Helen Lockstone; Stefanie Grafmueller; Vicki M. Fleming; Jonathan Flint; Chris B. Willberg; Bertram Bengsch; Bianca Seigel; Narayan Ramamurthy; Nicole Zitzmann; Eleanor Barnes; Jonarthan Thevanayagam; Anisha Bhagwanani; Alasdair Leslie; Ye Htun Oo; Simon Kollnberger; Paul Bowness; Oliver Drognitz; David H. Adams; Hubert E. Blum; Robert Thimme; Paul Klenerman

CD8+ T lymphocytes play a key role in host defense, in particular against important persistent viruses, although the critical functional properties of such cells in tissue are not fully defined. We have previously observed that CD8+ T cells specific for tissue-localized viruses such as hepatitis C virus express high levels of the C-type lectin CD161. To explore the significance of this, we examined CD8+CD161+ T cells in healthy donors and those with hepatitis C virus and defined a population of CD8+ T cells with distinct homing and functional properties. These cells express high levels of CD161 and a pattern of molecules consistent with type 17 differentiation, including cytokines (e.g., IL-17, IL-22), transcription factors (e.g., retinoic acid-related orphan receptor γ-t, P = 6 × 10−9; RUNX2, P = 0.004), cytokine receptors (e.g., IL-23R, P = 2 × 10−7; IL-18 receptor, P = 4 × 10−6), and chemokine receptors (e.g., CCR6, P = 3 × 10−8; CXCR6, P = 3 × 10−7; CCR2, P = 4 × 10−7). CD161+CD8+ T cells were markedly enriched in tissue samples and coexpressed IL-17 with high levels of IFN-γ and/or IL-22. The levels of polyfunctional cells in tissue was most marked in those with mild disease (P = 0.0006). These data define a T cell lineage that is present already in cord blood and represents as many as one in six circulating CD8+ T cells in normal humans and a substantial fraction of tissue-infiltrating CD8+ T cells in chronic inflammation. Such cells play a role in the pathogenesis of chronic hepatitis and arthritis and potentially in other infectious and inflammatory diseases of man.


Journal of Immunology | 2001

Identification of HLA-B27-Restricted Peptides from the Chlamydia trachomatis Proteome with Possible Relevance to HLA-B27-Associated Diseases

Wolfgang Kuon; Hermann-Georg Holzhütter; Heiner Appel; Martina Grolms; Simon Kollnberger; Alexander Traeder; Peter Henklein; Elisabeth H. Weiss; Andreas Thiel; Roland Lauster; Paul Bowness; Andreas Radbruch; Peter-Michael Kloetzel; Joachim Sieper

The association of HLA-B27 with ankylosing spondylitis and reactive arthritis is the strongest one known between an MHC class I Ag and a disease. We have searched the proteome of the bacterium Chlamydia trachomatis for HLA-B27 binding peptides that are stimulatory for CD8+ cells both in a model of HLA-B27 transgenic mice and in patients. This was done by combining two biomathematical computer programs, the first of which predicts HLA-B27 peptide binding epitopes, and the second the probability of HLA-B27 peptide generation by the proteasome system. After preselection, immunodominant peptides were identified by Ag-specific flow cytometry. Using this approach we have identified for the first time nine peptides derived from different C. trachomatis proteins that are stimulatory for CD8+ T cells. Eight of these nine murine-derived peptides were recognized by cytotoxic T cells. The same strategy was used to identify B27-restricted chlamydial peptides in three patients with reactive arthritis. Eleven peptides were found to be stimulatory for patient-derived CD8+ T cells, of which eight overlapped those found in mice. Additionally, we applied the tetramer technology, showing that a B27/chlamydial peptide containing one of the chlamydial peptides stained CD8+ T cells in patients with Chlamydia-induced arthritis. This comprehensive approach offers the possibility of clarifying the pathogenesis of B27-associated diseases.


Arthritis & Rheumatism | 2014

Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27.

Liye Chen; R. Fischer; Yanchun Peng; Emma Reeves; Kirsty McHugh; Nicola Ternette; Tomáš Hanke; Tao Dong; Tim Elliott; Nilabh Shastri; Simon Kollnberger; Edward James; Benedikt M. Kessler; Paul Bowness

HLA–B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are the two strongest genetic factors predisposing to ankylosing spondylitis (AS). A key aminopeptidase in class I major histocompatibility complex presentation, ERAP1 potentially contributes to the pathogenesis of AS by altering HLA–B27 peptide presentation. The aim of this study was to analyze the effects of ERAP1 on the HLA–B27 peptide repertoire and peptide presentation to cytotoxic T lymphocytes (CTLs).


Annals of the Rheumatic Diseases | 2009

Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the Ubiquitin Proteasome pathway

Cynthia Wright; Mariola J. Edelmann; Kati diGleria; Simon Kollnberger; Holger B. Kramer; Simon J. McGowan; Kirsty McHugh; Stephen Taylor; Benedikt M. Kessler; Paul Bowness

Objectives: To determine if peripheral blood monocytes from patients with ankylosing spondylitis (AS) differed in protein expression compared to rheumatoid arthritis (RA) and healthy controls (HC). Methods: Monocyte protein expression was characterised by 2D gel electrophoresis and by label-free quantitative expression profiling, using nano-ultra performance liquid chromatography coupled to electrospray ionisation mass spectrometry (ESI-MSE, where E refers to low/high collision energy switching). Data sets were analysed using the Waters expression profiling system and Ingenuity pathway analysis (IPA). Results: Two-dimensional gel electrophoresis showed upregulation of proteasomal constituents in AS monocytes, including the β subunit of proteasome activator (PA)28. Monocyte expression profiling and IPA showed that significant changes in protein expression within the ubiquitin proteasome pathway (UPP) were restricted to AS monocytes. Statistically significant differences in protein expression involving the leucocyte extravasation, vascular endothelial growth factor, integrin and Toll-like receptor signalling pathways were seen in AS and RA monocytes compared to healthy controls. No evidence of upregulation of proteins involved in the endoplasmic reticulum stress response pathway was found in either AS or RA monocytes. Finally, the PA28 complex was shown to increase the generation of human leucocyte antigen (HLA)-B27 antigenic epitopes by the proteasome in vitro. Conclusions: Our proteomic analyses support the hypothesis that monocytes play an important role in the pathogenesis of AS and RA, and further suggest a specific role in AS for the UPP. Quantitative proteomic expression profiling constitutes a powerful new tool for rheumatology research.


Arthritis & Rheumatism | 2012

Inhibiting HLA–B27 homodimer–driven immune cell inflammation in spondylarthritis

Sravan Payeli; Simon Kollnberger; Osiris Marroquin Belaunzaran; Markus Thiel; Kirsty McHugh; Joanna Giles; J Shaw; Sascha Kleber; A Ridley; Isabel Wong-Baeza; Sarah Keidel; Kimiko Kuroki; Katsumi Maenaka; Andreas Wadle; Christoph Renner; P Bowness

OBJECTIVE Spondylarthritides (SpA), including ankylosing spondylitis (AS), are common inflammatory rheumatic diseases that are strongly associated with positivity for the HLA class I allotype B27. HLA-B27 normally forms complexes with β(2) -microglobulin (β(2) m) and peptide to form heterotrimers. However, an unusual characteristic of HLA-B27 is its ability to form β(2) m-free heavy chain homodimers (HLA-B27(2) ), which, unlike classic HLA-B27, bind to killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). Binding of HLA-B27(2) to KIR-3DL2-positive CD4+ T and natural killer (NK) cells stimulates cell survival and modulates cytokine production. This study was undertaken to produce an antibody to HLA-B27(2) in order to confirm its expression in SpA and to inhibit its proinflammatory properties. METHODS We generated monoclonal antibodies by screening a human phage display library positively against B27(2) and negatively against B27 heterotrimers. Specificity was tested by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR) assay, and fluorescence-activated cell sorting (FACS) analysis of B27(2) -expressing cell lines and peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with SpA. Functional inhibition of KIR-3DL2-B27(2) interactions was tested using cell lines and PBMCs from patients with SpA. RESULTS Monoclonal antibody HD6 specifically recognized recombinant HLA-B27(2) by ELISA and by SPR assay. HD6 bound to cell lines expressing B27(2) . FACS revealed binding of HD6 to PBMCs and SFMCs from patients with AS but not from controls. HD6 inhibited both the binding of HLA-B27(2) to KIR-3DL2 and the survival and proliferation of KIR-3DL2-positive NK cells. Finally, HD6 inhibited production of the proinflammatory disease-associated cytokine interleukin-17 by PBMCs from patients with AS. CONCLUSION These results demonstrate that antibody HD6 has potential for use in both the investigation and the treatment of AS and other B27-associated spondylarthritides.


Rheumatology | 2013

The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09

A Cauli; J Shaw; J Giles; H Hatano; O Rysnik; Sravan Payeli; K McHugh; G Dessole; G Porru; E. Desogus; S Fiedler; S Hölper; A Carette; M A Blanco-Gelaz; A Vacca; Matteo Piga; V Ibba; P Garau; G La Nasa; C López-Larrea; A Mathieu; Christoph Renner; P Bowness; Simon Kollnberger

Objectives. HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. Methods. We studied the formation of HLA-B*27:05 and HLA-B*27:09 heterotrimers and FHC forms including dimers in vitro and in transfected cells. We investigated HLA-B*27:05 and HLA-B*27:09 binding to KIR3DL1, KIR3DL2 and LILRB2 by FACS staining with class I tetramers and by quantifying interactions with KIR3DL2CD3ε-reporter cells and KIR3DL2-expressing NK cells. We also measured KIR expression on peripheral blood NK and CD4 T cells from 18 HLA-B*27:05 AS patients, 8 HLA-B27 negative and 12 HLA-B*27:05+ and HLA-B*27:09+ healthy controls by FACS staining. Results. HLA-B*27:09 formed less B272 and FHC than HLA-B*27:05. HLA-B*27:05-expressing cells stimulated KIR3DL2CD3ε-reporter T cells more effectively. Cells expressing HLA-B*27:05 promoted KIR3DL2+ NK cell survival more strongly than HLA-B*27:09. HLA-B*27:05 and HLA-B*27:09 dimer tetramers stained KIR3DL1, KIR3DL2 and LILRB2 equivalently. Increased proportions of NK and CD4 T cells expressed KIR3DL2 in HLA-B*27:05+ AS patients compared with HLA-B*27:05+, HLA-B*27:09+ and HLA-B27− healthy controls. Conclusion. Differences in the formation of FHC ligands for KIR3DL2 by HLA-B*27:05 and HLA-B*27:09 could contribute to the differential association of these alleles with AS.


Arthritis & Rheumatism | 2015

Activation‐induced KIR3DL2 binding to HLA‐B27 licenses pathogenic T cell differentiation in Spondyloarthritis

A Ridley; Hiroko Hatano; Isabel Wong-Baeza; J Shaw; Katherine K. Matthews; Hussein Al-Mossawi; Kristin Ladell; David A. Price; Paul Bowness; Simon Kollnberger

In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA.


Frontiers in Immunology | 2012

New perspectives on the ligands and function of the killer cell immunoglobulin-like receptor KIR3DL2 in health and disease.

J Shaw; Simon Kollnberger

KIR3DL2/CD158k/p140 is a three domain killer cell immunoglobulin-like receptor incorporating cytoplasmic immunoreceptor tyrosine inhibitory motifs, expressed as a disulphide-bonded dimer. KIR3DL2 is a framework gene within the KIR locus and is highly polymorphic, with 62 allelic variants possibly coding for protein reported. KIR3DL2 binds to HLA-A3 and -A11 in a peptide-dependent fashion and to B27 free heavy chain forms. In addition, KIR3DL2 can also function as an innate immune receptor for delivery of CpG DNA to TLR9 in NK cells. The increased levels of expression of KIR3DL2 compared with other KIR expressed by T cell subsets in healthy individuals suggest it may function as a default KIR receptor. KIR3DL2-expressing natural killer (NK) cells and IL17 secreting CD4 T cells have been implicated in the pathogenesis of ankylosing spondylitis. Moreover, KIR3DL2 expression delineates circulating and cutaneous lymphoma T cells in Sézary’s syndrome. Here we discuss how the unique molecular attributes of KIR3DL2 impact on its function on NK and T cells and how this may relate to its role in disease.


PLOS ONE | 2015

The Leukocyte Immunoglobulin-Like Receptor Family Member LILRB5 Binds to HLA-Class I Heavy Chains

Zhiyong Zhang; Hiroko Hatano; J Shaw; Marloes Olde Nordkamp; Guosheng Jiang; Demin Li; Simon Kollnberger

Objective The leukocyte immunoglobulin-like receptor (LILR) family includes inhibitory and stimulatory members which bind to classical and non-classical HLA-class I. The ligands for many LILR including LILRB5 have not yet been identified. Methods We generated C-terminal eGFP and N-terminal FLAG-tagged fusion constructs for monitoring LILR expression. We screened for LILR binding to HLA-class I by tetramer staining of 293T cells transfected with LILRA1, A4, A5 A6 and LILRB2 and LILRB5. We also studied HLA class I tetramer binding to LILRB5 on peripheral monocyte cells. LILRB5 binding to HLA-class I heavy chains was confirmed by co-immunoprecipitation. Results HLA-B27 (B27) free heavy chain (FHC) dimer but not other HLA-class I stained LILRB5-transfected 293T cells. B27 dimer binding to LILRB5 was blocked with the class I heavy chain antibody HC10 and anti-LILRB5 antisera. B27 dimers also bound to LILRB5 on peripheral monocytes. HLA-B7 and B27 heavy chains co-immunoprecipitated with LILRB5 in transduced B and rat basophil RBL cell lines. Conclusions Our findings show that class I free heavy chains are ligands for LILRB5. The unique binding specificity of LILRB5 for HLA-class I heavy chains probably results from differences in the D1 and D2 immunoglobulin-like binding domains which are distinct from other LILR which bind to β2m-associated HLA-class I.


Journal of Immunology | 2015

The D0 Ig-like Domain Plays a Central Role in the Stronger Binding of KIR3DL2 to B27 Free H Chain Dimers

Hiroko Hatano; J Shaw; Kaitlin Marquardt; Zhiyong Zhang; Laurent Gauthier; Stéphanie Chanteux; Benjamin Rossi; Demin Li; Julie C. Mitchell; Simon Kollnberger

We proposed that the killer cell Ig-like receptor KIR3DL2 binding more strongly to HLA-B27 (B27) β2-microglobulin free H chain (FHC) dimers than other HLA–class I molecules regulates lymphocyte function in arthritis and infection. We compared the function of B27 FHC dimers with other class I H chains and identified contact residues in KIR3DL2. B27 FHC dimers interacted functionally with KIR3DL2 on NK and reporter cells more strongly than did other class I FHCs. Mutagenesis identified key residues in the D0 and other Ig-like domains that were shared and distinct from KIR3DL1 for KIR3DL2 binding to B27 and other class I FHCs. We modeled B27 dimer binding to KIR3DL2 and compared experimental mutagenesis data with computational “hot spot” predictions. Modeling predicts that the stronger binding of B27 dimers to KIR3DL2 is mediated by nonsymmetrical complementary contacts of the D0 and D1 domains with the α1, α2, and α3 domains of both B27 H chains. In contrast, the D2 domain primarily contacts residues in the α2 domain of one B27 H chain. These findings provide novel insights about the molecular basis of KIR3DL2 binding to B27 and other ligands and suggest an important role for KIR3DL2–B27 interactions in controlling the function of NK cells in B27+ individuals.

Collaboration


Dive into the Simon Kollnberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Shaw

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

P Bowness

Nuffield Orthopaedic Centre

View shared research outputs
Top Co-Authors

Avatar

A Ridley

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge