Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Le Hello is active.

Publication


Featured researches published by Simon Le Hello.


PLOS ONE | 2012

CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections.

Laëtitia Fabre; Jian Zhang; Ghislaine Guigon; Simon Le Hello; Véronique Guibert; Marie Accou-Demartin; Saïana de Romans; Catherine Lim; Chrystelle Roux; Virginie Passet; Laure Diancourt; M. Guibourdenche; Sylvie Issenhuth-Jeanjean; Mark Achtman; Sylvain Brisse; Christophe Sola; François-Xavier Weill

Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool.


The Journal of Infectious Diseases | 2011

International Spread of an Epidemic Population of Salmonella enterica Serotype Kentucky ST198 Resistant to Ciprofloxacin

Simon Le Hello; Rene S. Hendriksen; Benoît Doublet; I. S.T. Fisher; Eva Møller Nielsen; Jean M. Whichard; Brahim Bouchrif; Kayode Fashae; Sophie A. Granier; Nathalie Jourdan-Da Silva; Axel Cloeckaert; E. John Threlfall; Frederick J. Angulo; Frank Møller Aarestrup; John Wain; François-Xavier Weill

National Salmonella surveillance systems from France, England and Wales, Denmark, and the United States identified the recent emergence of multidrug-resistant isolates of Salmonella enterica serotype Kentucky displaying high-level resistance to ciprofloxacin. A total of 489 human cases were identified during the period from 2002 (3 cases) to 2008 (174 cases). These isolates belonged to a single clone defined by the multilocus sequence type ST198, the XbaI-pulsed-field gel electrophoresis cluster X1, and the presence of the Salmonella genomic island 1 variant SGI1-K. This clone was probably selected in 3 steps in Egypt during the 1990s and the early 2000s and has now spread to several countries in Africa and, more recently, in the Middle East. Poultry has been identified as a potential major vehicle for infection by this clone. Continued surveillance and appropriate control measures should be implemented by national and international authorities to limit the spread of this strain.


Emerging Infectious Diseases | 2014

Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups

Suzanne Bialek-Davenet; Alexis Criscuolo; Florent Ailloud; Virginie Passet; Louis Jones; Anne-Sophie Delannoy-Vieillard; Benoit Garin; Simon Le Hello; Guillaume Arlet; Marie-Hélène Nicolas-Chanoine; Dominique Decré; Sylvain Brisse

We created a Web-accessible genome database to enable rapid extraction of genotype, virulence, and resistance information from sequences.


Frontiers in Microbiology | 2013

The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain

Simon Le Hello; Amany Abdelrehim Bekhit; Sophie A. Granier; H. Barua; Janine Beutlich; Magdalena Zając; Sebastian Münch; Vitali Sintchenko; Brahim Bouchrif; Kayode Fashae; Jean-Louis Pinsard; Lucile Sontag; Laëtitia Fabre; Martine Garnier; Véronique Guibert; Peter Howard; Rene S. Hendriksen; Jens Peter Christensen; Paritosh Kumar Biswas; Axel Cloeckaert; Wolfgang Rabsch; Dariusz Wasyl; Benoît Doublet; François-Xavier Weill

While the spread of Salmonella enterica serotype Kentucky resistant to ciprofloxacin across Africa and the Middle-East has been described recently, the presence of this strain in humans, food, various animal species (livestock, pets, and wildlife) and in environment is suspected in other countries of different continents. Here, we report results of an in-depth molecular epidemiological study on a global human and non-human collection of S. Kentucky (n = 70). We performed XbaI-pulsed field gel electrophoresis and multilocus sequence typing, assessed mutations in the quinolone resistance-determining regions, detected β-lactam resistance mechanisms, and screened the presence of the Salmonella genomic island 1 (SGI1). In this study, we highlight the rapid and extensive worldwide dissemination of the ciprofloxacin-resistant S. Kentucky ST198-X1-SGI1 strain since the mid-2000s in an increasingly large number of contaminated sources, including the environment. This strain has accumulated an increasing number of chromosomal and plasmid resistance determinants and has been identified in the Indian subcontinent, Southeast Asia and Europe since 2010. The second substitution at position 87 in GyrA (replacing the amino acid Asp) appeared helpful for epidemiological studies to track the origin of contamination. This global study provides evidence leading to the conclusion that high-level resistance to ciprofloxacin in S. Kentucky is a simple microbiological trait that facilitates the identification of the epidemic clone of interest, ST198-X1-SGI1. Taking this into account is essential in order to detect and monitor it easily and to take rapid measures in livestock to ensure control of this infection.


PLOS Neglected Tropical Diseases | 2016

Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa

Vanessa K. Wong; Stephen Baker; Kathryn E. Holt; Chinyere Okoro; Derek Pickard; Florian Marks; Andrew J. Page; Grace Olanipekun; Huda Munir; Roxanne Alter; Paul D. Fey; Nicholas A. Feasey; François-Xavier Weill; Simon Le Hello; Peter J. Hart; Samuel Kariuki; Robert F. Breiman; Melita A. Gordon; Robert S. Heyderman; Jan Jacobs; Octavie Lunguya; Robert S. Onsare; Chisomo L. Msefula; Calman A. MacLennan; Karen H. Keddy; Anthony M. Smith; Elizabeth de Pinna; Satheesh Nair; Ben Amos; Gordon Dougan

Background The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children. Methods A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance. Results Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi. Conclusions These data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid.


bioRxiv | 2016

Genome-scale rates of evolutionary change in bacteria.

Sebastián Duchêne; Kathryn E. Holt; François-Xavier Weill; Simon Le Hello; Jane Hawkey; David J. Edwards; Mathieu Fourment; Edward C. Holmes

Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria.


Nature Genetics | 2016

Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings

Nicholas A. Feasey; James Hadfield; Karen H. Keddy; Timothy J. Dallman; Jan Jacobs; Xiangyu Deng; Paul Wigley; Lars Barquist; Gemma C. Langridge; Theresa Feltwell; Simon R. Harris; Alison E. Mather; Maria Fookes; Martin Aslett; Chisomo L. Msefula; Samuel Kariuki; Calman A. MacLennan; Robert S. Onsare; F X Weill; Simon Le Hello; Anthony M. Smith; Michael McClelland; Prerak T. Desai; Christopher M. Parry; John S. Cheesbrough; Neil French; Josefina Campos; José A. Chabalgoity; Laura Betancor; Katie L. Hopkins

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.


Applied and Environmental Microbiology | 2016

Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

Pimlapas Leekitcharoenphon; Rene S. Hendriksen; Simon Le Hello; François-Xavier Weill; Dorte Lau Baggesen; Se-Ran Jun; David W. Ussery; Ole Lund; Derrick W. Crook; Daniel J. Wilson; Frank Møller Aarestrup

ABSTRACT It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.


PLOS ONE | 2015

Enteric Bacterial Pathogens in Children with Diarrhea in Niger: Diversity and Antimicrobial Resistance

Céline Langendorf; Simon Le Hello; Aissatou Moumouni; Malika Gouali; Abdoul Aziz Mamaty; Rebecca F. Grais; François-Xavier Weill; Anne-Laure Page

Background Although rotavirus is the leading cause of severe diarrhea among children in sub-Saharan Africa, better knowledge of circulating enteric pathogenic bacteria and their antimicrobial resistance is crucial for prevention and treatment strategies. Methodology/Principal Findings As a part of rotavirus gastroenteritis surveillance in Maradi, Niger, we performed stool culture on a sub-population of children under 5 with moderate-to-severe diarrhea between April 2010 and March 2012. Campylobacter, Shigella and Salmonella were sought with conventional culture and biochemical methods. Shigella and Salmonella were serotyped by slide agglutination. Enteropathogenic Escherichia coli (EPEC) were screened by slide agglutination with EPEC O-typing antisera and confirmed by detection of virulence genes. Antimicrobial susceptibility was determined by disk diffusion. We enrolled 4020 children, including 230 with bloody diarrhea. At least one pathogenic bacterium was found in 28.0% of children with watery diarrhea and 42.2% with bloody diarrhea. Mixed infections were found in 10.3% of children. EPEC, Salmonella and Campylobacter spp. were similarly frequent in children with watery diarrhea (11.1%, 9.2% and 11.4% respectively) and Shigella spp. were the most frequent among children with bloody diarrhea (22.1%). The most frequent Shigella serogroup was S. flexneri (69/122, 56.5%). The most frequent Salmonella serotypes were Typhimurimum (71/355, 20.0%), Enteritidis (56/355, 15.8%) and Corvallis (46/355, 13.0%). The majority of putative EPEC isolates was confirmed to be EPEC (90/111, 81.1%). More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. Around 13% (46/360) Salmonella exhibited an extended-spectrum beta-lactamase phenotype. Conclusions This study provides updated information on enteric bacteria diversity and antibiotic resistance in the Sahel region, where such data are scarce. Whether they are or not the causative agent of diarrhea, bacterial infections and their antibiotic resistance profiles should be closely monitored in countries like Niger where childhood malnutrition pre-disposes to severe and invasive infections.


Emerging Infectious Diseases | 2005

Melioidosis in New Caledonia.

Simon Le Hello; Bart J. Currie; Daniel Godoy; Brian G. Spratt; Marc Mikulski; Flore Lacassin; Benoit Garin

Recognized melioidosis-endemic areas are widening. In the South Pacific, melioidosis is endemic in New Caledonia, northern Australia, and Papua New Guinea. We report the first 4 documented cases of human melioidosis from New Caledonia. Molecular typing of 2 Burkholderia pseudomallei isolates suggests a link to Australian strains.

Collaboration


Dive into the Simon Le Hello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Cloeckaert

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rene S. Hendriksen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Benoît Doublet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jan Jacobs

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge