Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon O'Doherty is active.

Publication


Featured researches published by Simon O'Doherty.


Nature Geoscience | 2013

Three decades of global methane sources and sinks

Stefanie Kirschke; P. Bousquet; Philippe Ciais; Marielle Saunois; Josep G. Canadell; E. J. Dlugokencky; P. Bergamaschi; D. Bergmann; D. R. Blake; Lori Bruhwiler; Philip Cameron-Smith; Simona Castaldi; F. Chevallier; Liang Feng; A. Fraser; Martin Heimann; E. L. Hodson; Sander Houweling; B. Josse; P. J. Fraser; P. B. Krummel; Jean-Francois Lamarque; R. L. Langenfelds; Corinne Le Quéré; Vaishali Naik; Simon O'Doherty; Paul I. Palmer; I. Pison; David A. Plummer; Benjamin Poulter

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.


Journal of Geophysical Research | 2000

A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE

Ronald G. Prinn; Ray F. Weiss; P. J. Fraser; Peter G. Simmonds; Derek M. Cunnold; F. N. Alyea; Simon O'Doherty; P. K. Salameh; B. R. Miller; J. Huang; R. H. J. Wang; Dana E. Hartley; Christina M. Harth; L. P. Steele; G. A. Sturrock; Pm Midgley; A. McCulloch

We describe in detail the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Gases Experiment (GAGE), and the Advanced Global Atmospheric Gases Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high-frequency in situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past 20 years, and show both the evolution of latitudinal gradients and the high-frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long-lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past 60 years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are as follows: (1) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels; (2) mole fractions of total chlorine contained in long-lived halocarbons (CCl 2 F 2 , CCl 3 F, CH 3 CCl 3 , CCl 4 , CHClF 2 , CCl 2 FCClF 2 , CH 3 Cl, CH 2 Cl 2 , CHCl 3 , CCl 2 =CCl 2 ) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere; (3) the chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism; (4) multiannual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALE/GAGE/AGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where available (CCl 2 F 2 (CFC-12) and CCl 2 FCClF 2 (CFC-113) show the greatest discrepancies); (5) the mole fractions of the hydrochlorofluorocarbons and hydrofluorocarbons, which are replacing the regulated halocarbons, are rising very rapidly in the atmosphere, but with the exception of the much longer manufactured CHClF 2 (HCFC-22), they are not yet at levels sufficient to contribute significantly to atmospheric chlorine loading. These replacement species could in the future provide independent estimates of the global weighted-average OH concentration provided their industrial emissions are accurately documented; (6) in the future, analysis of pollution events measured using high-frequency in situ measurements of chlorofluorocarbons and their replacements may enable emission estimates at the regional level, which, together with industrial end-use data, are of sufficient accuracy to be capable of identifying regional noncompliance with the Montreal Protocol.


Journal of Geophysical Research | 2001

Transport of boreal forest fire emissions from Canada to Europe

Caroline Forster; Ulla Wandinger; Gerhard Wotawa; Paul James; Ina Mattis; Dietrich Althausen; Peter G. Simmonds; Simon O'Doherty; S. Gerard Jennings; Christoph Kleefeld; Johannes Schneider; Thomas Trickl; Stephan Kreipl; Horst Jäger; Andreas Stohl

In August 1998, severe forest fires occurred in many parts of Canada, especially in the Northwest Territories. In the week from August 5 to 11, more than 1000 different fires burned >1 × 106 ha of boreal forest, the highest 1-week sum ever reported throughout the 1990s. In this study we can unambigously show for the first time that these fires caused pronounced large-scale haze layers above Europe and that they influenced concentrations of carbon monoxide and other trace gases at the surface station Mace Head in Ireland over a period of weeks. Transport took place across several thousands of kilometers. An example of such an event, in which a pronounced aerosol layer was observed at an altitude of 3–6 km over Germany during August 1998, is investigated in detail. Backward trajectories ending at the measured aerosol layer are calculated and shown to have their origin in the forest fire region. Simulations with a particle dispersion model reveal how a substantial amount of forest fire emissions was transported across the Atlantic. The resulting aerosol lamina over Europe is captured well by the model. In addition, the model demonstrates that the forest fire emissions polluted large regions over Europe during the second half of August 1998. Surface measurements at Mace Head are compared to the model results for an anthropogenic and a forest fire carbon monoxide tracer, respectively. While wet deposition removed considerable amounts of aerosol during its transport, forest fire carbon monoxide reached Europe in copious amounts. It is estimated that during August 1998, 32%, 10%, and 58% of the carbon monoxide enhancement over the background level at Mace Head were caused by European and North American anthropogenic emissions and forest fire emissions, respectively.


Journal of Geophysical Research | 2010

Inverse modeling of European CH4 emissions 2001-2006

P. Bergamaschi; M. Krol; Jan Fokke Meirink; F. Dentener; Arjo Segers; J. van Aardenne; Suvi Monni; Alex Vermeulen; Martina Schmidt; Michel Ramonet; C. Yver; F. Meinhardt; Euan G. Nisbet; R. E. Fisher; Simon O'Doherty; E. J. Dlugokencky

European CH4 emissions are estimated for the period 2001-2006 using a four-dimensional variational (4DVAR) inverse modeling system, based on the atmospheric zoom model TM5. Continuous observations are used from various European monitoring stations, complemented by European and global flask samples from the NOAA/ESRL network. The available observations mainly provide information on the emissions from northwest Europe (NWE), including the UK, Ireland, the BENELUX countries, France and Germany. The inverse modeling estimates for the total anthropogenic emissions from NWE are 21% higher compared to the EDGARv4.0 emission inventory and 40% higher than values reported to U.N. Framework Convention on Climate Change. Assuming overall uncertainties on the order of 30% for both bottom-up and top-down estimates, all three estimates can be still considered to be consistent with each other. However, the uncertainties in the uncertainty estimates prevent us from verifying (or falsifying) the bottom-up inventories in a strict sense. Sensitivity studies show some dependence of the derived spatial emission patterns on the set of atmospheric monitoring stations used, but the total emissions for the NWE countries appear to be relatively robust. While the standard inversions include a priori information on the spatial and temporal emission patterns from bottom-up inventories, a further sensitivity inversion without this a priori information results in very similar NWE country totals, demonstrating that the available observations provide significant constraints on the emissions from the NWE countries independent from bottom-up inventories.


Journal of Geophysical Research | 2000

European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland

Sebastien Biraud; Philippe Ciais; Michel Ramonet; Peter G. Simmonds; V. Kazan; Patrick Monfray; Simon O'Doherty; T. Gerard Spain; S. Gerard Jennings

Flux estimates of CO2, CH4, N2O, and CFCs over western Europe have been inferred from continuous atmospheric records of these species at the atmospheric research station of Mace Head, Ireland. We use radon (222Rn) which has a fairly uniform source over continents as a reference compound to estimate unknown sources of other species. The correlation between each species and 222Rn is calculated for a suite of synoptic events that have been selected in the Mace Head record over the period 1996/97. In the following, we describe the method and its uncertainties, and we establish data selection criteria that minimize the influence of local sources over Ireland, in the vicinity of the station, in order to select synoptic events originating from western Europe. We estimate western European flux densities of 45–30 103 kg C km−2 month−1 during wintertime for CO2, of 4.8–3.5 103 kg CH4 km−2 yr−1, 475–330 kg N2O km−2 yr−1, 2.5–1.8 kg CFC-11 km−2 yr−1 for CFC-11, and 4.2–2.9 kg CFC-12 km−2 yr−1 for CFC-12. Our estimates are independent, although in good agreement with those produced by inventories, except for CFC-11 where our estimate is much lower than the inventory.


Atmospheric Environment | 1996

Long-term trends in concentrations of halocarbons and radiatively active trace gases in atlantic and european air masses monitored at mace head, Ireland from 1987–1994

Peter G. Simmonds; R. G. Derwent; A. McCulloch; Simon O'Doherty; A. Gaudry

Long-term trends in trace gas concentrations over the period 1987–1994 are reported here for air masses advected to the Mace Head monitoring station on the remote west coast of Ireland. The trace gases covered include the principal halocarbons: CFC-11, CFC-12, CFC-113, CCl4 and methyl chloroform; the radiatively active trace gases: carbon dioxide, methane, nitrous oxide and ozone; together with carbon monoxide, the major photochemical ozone precursor. By careful sorting using two independent techniques, it is possible to distinguish air masses that arrive at Mace Head from over the North Atlantic Ocean and those that have recently travelled over polluted European continental land areas. Concentration trends have been derived for each trace gas in polluted European continental and baseline North Atlantic maritime air and they appear to be distinctly different. Using a simple long-range transport model, estimates have been made of the European source strengths required to sustain the observed concentrations of each trace gas and their recent trends. These are compared with published emission inventories where they are available. The European continent appears to be a significant source of methane, carbon dioxide and nitrous oxide, a net sink for ozone and a declining source of the principal halocarbons and carbon monoxide.


Journal of Geophysical Research | 2006

Global trends, seasonal cycles and European emissions of dichloromethane, trichloroethene and tetrachloroethene from the AGAGE observations at Mace Head, Ireland and Cape Grim, Tasmania

Peter G. Simmonds; Alistair J. Manning; Derek M. Cunnold; A. McCulloch; Simon O'Doherty; R. G. Derwent; P. B. Krummel; P. J. Fraser; Bronwyn Dunse; L. W. Porter; R. H. J. Wang; B. R. Greally; B. R. Miller; P. K. Salameh; Ray F. Weiss; Ronald G. Prinn

[1] In situ observations (every 4 hours) of dichloromethane (CH 2 Cl 2 ) from April 1995 to December 2004 and trichloroethene (C 2 HCl 3 ) and tetrachloroethene (C 2 Cl 4 ) from September 2000 to December 2004 are reported for the Advanced Global Atmospheric Gases Experiment (AGAGE) station at Mace Head, Ireland. At a second AGAGE station at Cape Grim, Tasmania, CH 2 Cl 2 and C 2 Cl 4 data collection commenced in 1998 and 2000, respectively. C 2 HCl 3 is below the limit of detection at Cape Grim except during pollution episodes. At Mace Head CH 2 Cl 2 shows a downward trend from 1995 to 2004 of 0.7±0.2 ppt yr -1 (ppt: expressed as dry mole fractions in 10 12 ), although from 1998 to 2004 the decrease has been only 0.3 ± 0.1ppt yr -1 . Conversely, there has been a small but significant growth of 0.05 ± 0.01 ppt yr -1 in CH 2 Cl 2 at Cape Grim. The time series for C 2 HCl 3 and C 2 Cl 4 are relatively short for accurate trend analyses; however, we observe a small but significant decline in C 2 Cl 4 (0.18 ± 0.05 ppt yr -1 ) at Mace Head. European emissions inferred from AGAGE measurements are compared to recent estimates from industry data and show general agreement for C 2 HCl 3 . Emissions estimated from observations are lower than industry emission estimates for C 2 Cl 4 and much lower in the case of CH 2 Cl 2 . A study of wildfires in Tasmania, uncontaminated by urban emissions, suggests that the biomass burning source of CH 2 Cl 2 may have been previously overestimated. All three solvents have distinct annual cycles, with the phases and amplitudes reflecting their different chemical reactivity with OH as the primary sink.


Journal of Geophysical Research | 2001

In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998

Simon O'Doherty; Peter G. Simmonds; Derek M. Cunnold; H. J. Wang; G. A. Sturrock; P. J. Fraser; Db Ryall; R. G. Derwent; Ray F. Weiss; P. K. Salameh; B. R. Miller; Ronald G. Prinn

Measurements of atmospheric chloroform (CHCl3) by in situ gas chromatography using electron capture detection are reported from the Advanced Global Atmospheric Gases Experiment (AGAGE) network of atmospheric research stations. They are some of the most comprehensive in situ, high-frequency measurements to be reported for CHCl3 and provide valuable information not only on clean “baseline” mixing ratios but also on local and regional sources. Emissions from these sources cause substantial periodic increases in CHCl3 concentrations above their baseline levels, which can be used to identify source strengths. This is particularly the case for measurements made at Mace Head, Ireland. Furthermore, these local sources of CHCl3 emissions are significant in relation to current estimates of global emissions and illustrate that the understanding of competing sources and sinks of CHCl3 is still fragmentary. These observations also show that CHCl3 has a very pronounced seasonal cycle with a summer minimum and winter maximum presumably resulting from enhanced destruction by OH in the summer. The amplitude of the cycle is dependent on sampling location. Over the 57 months of in situ measurements a global average baseline concentration of 8.9±0.1 ppt was determined with no appreciable trend in the baseline detected.


Journal of Geophysical Research | 2000

Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the 1994–1998 period

Peter G. Simmonds; R.G. Derwent; Simon O'Doherty; Db Ryall; L. P. Steele; R. L. Langenfelds; P. K. Salameh; Hc Wang; Ch Dimmer; Le Hudson

Continuous high-frequency (every 40-min) automatic measurements of hydrogen have been made at the Mace Head atmospheric research station on the Atlantic Ocean coast of Ireland throughout 1994–1998. These observations represent one the most comprehensive in situ records of a trace gas that has received comparatively little attention. Individual measurements have been sorted by four independent methods to separate clean, maritime air masses from regionally polluted European air masses. Hydrogen concentrations in midlatitude Northern Hemisphere baseline air show a distinct seasonal cycle with highest concentrations during spring and lowest concentrations during late autumn, with a peak-to-trough amplitude of 38±6 ppb, averaged over the observed seasonal cycles from 1994 to 1998. The mean hydrogen concentration in midlatitude Northern Hemisphere baseline air on January 1, 1995, was estimated as 496.5 ppb with an upward trend of 1.2±0.8 ppb yr−1. Evidence has also been obtained for European pollution sources with source strength of about 0.8 Tg yr−1 and for deposition of hydrogen to soils. The observation of slightly elevated hydrogen concentrations relative to baseline levels in tropical maritime air masses points to a latitudinal gradient in hydrogen with higher concentrations in lower latitudes of the Northern Hemisphere and in the Southern Hemisphere. This is confirmed by comparable hydrogen observations at Cape Grim, Tasmania, which are consistently higher than measurements recorded at Mace Head. Mean hemispheric concentrations of 504 and 520 ppb have been estimated for the Northern and Southern Hemispheres, respectively, for January 1, 1996, corresponding to a total atmospheric hydrogen burden of 182 Tg.


Nature | 2005

Low European methyl chloroform emissions inferred from long-term atmospheric measurements

Stefan Reimann; Alistair J. Manning; Peter G. Simmonds; Derek M. Cunnold; Ray Wang; Jinlong Li; A. McCulloch; Ronald G. Prinn; J. Huang; Ray F. Weiss; Paul J. Fraser; Simon O'Doherty; B. R. Greally; Konrad Stemmler; Matthias Hill; Doris Folini

Methyl chloroform (CH3CCl3, 1,1,1,-trichloroethane) was used widely as a solvent before it was recognized to be an ozone-depleting substance and its phase-out was introduced under the Montreal Protocol. Subsequently, its atmospheric concentration has declined steadily and recent European methyl chloroform consumption and emissions were estimated to be less than 0.1 gigagrams per year. However, data from a short-term tropospheric measurement campaign (EXPORT) indicated that European methyl chloroform emissions could have been over 20 gigagrams in 2000 (ref. 6), almost doubling previously estimated global emissions. Such enhanced emissions would significantly affect results from the CH3CC13 method of deriving global abundances of hydroxyl radicals (OH) (refs 7–12)—the dominant reactive atmospheric chemical for removing trace gases related to air pollution, ozone depletion and the greenhouse effect. Here we use long-term, high-frequency data from Mace Head, Ireland and Jungfraujoch, Switzerland, to infer European methyl chloroform emissions. We find that European emission estimates declined from about 60 gigagrams per year in the mid-1990s to 0.3–1.4 and 1.9–3.4 gigagrams per year in 2000–03, based on Mace Head and Jungfraujoch data, respectively. Our European methyl chloroform emission estimates are therefore higher than calculated from consumption data, but are considerably lower than those derived from the EXPORT campaign in 2000 (ref. 6).

Collaboration


Dive into the Simon O'Doherty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray F. Weiss

University of California

View shared research outputs
Top Co-Authors

Avatar

Ronald G. Prinn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. B. Krummel

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

P. J. Fraser

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jens Mühle

University of California

View shared research outputs
Top Co-Authors

Avatar

P. K. Salameh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. P. Steele

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge