Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon P. Newman is active.

Publication


Featured researches published by Simon P. Newman.


Breast Cancer Research | 2002

The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer

Atul Purohit; Simon P. Newman; Michael J. Reed

Cytokines, such as IL-6 and tumor necrosis factor (TNF)-α, have an important role in regulating estrogen synthesis in peripheral tissues, including normal and malignant breast tissues. The activities of the aromatase, estradiol 17β-hydroxysteroid dehydrogenase and estrone sulfatase are all increased by IL-6 and TNF-α. Prostaglandin E2 may also be an important regulator of aromatase activity in breast tumors. Macrophages and lymphocytes, which invade many breast tumors, are thought to be an important source of factors that can stimulate estrogen synthesis in malignant breast tissues. The co-ordinated stimulation of the activities of the enzymes that are involved in estrogen synthesis offers an explanation for the high concentrations of estrogens that are present in breast tumors.


International Journal of Cancer | 2008

17β‐hydroxysteroid dehydrogenase Type 1, and not Type 12, is a target for endocrine therapy of hormone‐dependent breast cancer

Joanna M. Day; Paul A. Foster; Helena J. Tutill; Michael F.C. Parsons; Simon P. Newman; Surinder K. Chander; Gillian M. Allan; Harshani R. Lawrence; Nigel Vicker; Barry V. L. Potter; Michael J. Reed; Atul Purohit

Oestradiol (E2) stimulates the growth of hormone‐dependent breast cancer. 17β‐hydroxysteroid dehydrogenases (17β‐HSDs) catalyse the pre‐receptor activation/inactivation of hormones and other substrates. 17β‐HSD1 converts oestrone (E1) to active E2, but it has recently been suggested that another 17β‐HSD, 17β‐HSD12, may be the major enzyme that catalyses this reaction in women. Here we demonstrate that it is 17β‐HSD1 which is important for E2 production and report the inhibition of E1‐stimulated breast tumor growth by STX1040, a non‐oestrogenic selective inhibitor of 17β‐HSD1, using a novel murine model. 17β‐HSD1 and 17β‐HSD12 mRNA and protein expression, and E2 production, were assayed in wild type breast cancer cell lines and in cells after siRNA and cDNA transfection. Although 17β‐HSD12 was highly expressed in breast cancer cell lines, only 17β‐HSD1 efficiently catalysed E2 formation. The effect of STX1040 on the proliferation of E1‐stimulated T47D breast cancer cells was determined in vitro and in vivo. Cells inoculated into ovariectomised nude mice were stimulated using 0.05 or 0.1 μg E1 (s.c.) daily, and on day 35 the mice were dosed additionally with 20 mg/kg STX1040 s.c. daily for 28 days. STX1040 inhibited E1‐stimulated proliferation of T47D cells in vitro and significantly decreased tumor volumes and plasma E2 levels in vivo. In conclusion, a model was developed to study the inhibition of the major oestrogenic 17β‐HSD, 17β‐HSD1, in breast cancer. Both E2 production and tumor growth were inhibited by STX1040, suggesting that 17β‐HSD1 inhibitors such as STX1040 may provide a novel treatment for hormone‐dependent breast cancer.


British Journal of Cancer | 2004

Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents.

C R Ireson; S K Chander; Atul Purohit; S Perera; Simon P. Newman; D Parish; Matthew Paul Leese; A C Smith; Barry V. L. Potter; Michael J. Reed

2-Methoxyoestradiol (2-MeOE2) is an endogenous oestrogen metabolite that inhibits the proliferation of cancer cells in vitro, and it is also antiangiogenic. In vivo 2-MeOE2, when administered at relatively high doses, inhibits the growth of tumours derived from breast cancer cells, sarcomas and melanomas. Sulphamoylated derivatives of 2-MeOE2 are more potent inhibitors of in vitro breast cancer cell growth than 2-MeOE2. In the present study, we have compared the pharmacokinetic profiles and metabolism of 2-MeOE2 and its sulphamoylated derivative, 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE), in adult female rats. Their ability to inhibit tumour growth was compared in nude mice bearing xenografts derived from MDA-MB-435 (oestrogen receptor negative) melanoma cancer cells. After a single oral 10 mg kg−1 dose of 2-MeOE2bisMATE, significant concentrations of this compound were still detectable at 24 h. In contrast, no 2-MeOE2 or metabolites were detected in plasma at any time after a 10 mg kg−1 oral dose. Thus, the bioavailability of 2-MeOE2 is very low, whereas for 2-MeOE2bisMATE it was 85%. No significant metabolites of 2-MeOE2bisMATE were detected in plasma after oral or intravenous dosing, showing that this drug is resistant to metabolism. In the tumour efficacy model, oral administration of 2-MeOE2bisMATE, at 20 mg kg−1 day−1 daily for 28 days, almost completely inhibited tumour growth. Inhibition of tumour growth was maintained for a further 28 days after the cessation of dosing. At this dose level, 2-MeOE2 did not inhibit tumour growth. The resistance to metabolism shown by 2-MeOE2bisMATE and its ability to inhibit tumour growth in vivo suggest that this compound should have considerable potential for development as a novel anticancer drug.


British Journal of Cancer | 2010

Class III β-tubulin expression and in vitro resistance to microtubule targeting agents

Chloe Stengel; Simon P. Newman; Matthew Paul Leese; Barry V. L. Potter; Michael J. Reed; Atul Purohit

Background:Class III β-tubulin overexpression is a marker of resistance to microtubule disruptors in vitro, in vivo and in the clinic for many cancers, including breast cancer. The aims of this study were to develop a new model of class III β-tubulin expression, avoiding the toxicity associated with chronic overexpression of class III β-tubulin, and study the efficacy of a panel of clinical and pre-clinical drugs in this model.Methods:MCF-7 (ER+ve) and MDA-MB-231 (ER−ve) were either transfected with pALTER-TUBB3 or siRNA-tubb3 and 24 h later exposed to test compounds for a further 96 h for proliferation studies. RT–PCR and immunoblotting were used to monitor the changes in class III β-tubulin mRNA and protein expression.Results:The model allowed for subtle changes in class III β-tubulin expression to be achieved, which had no direct effect on the viability of the cells. Class III β-tubulin overexpression conferred resistance to paclitaxel and vinorelbine, whereas downregulation of class III β-tubulin rendered cells more sensitive to these two drugs. The efficacy of the colchicine-site binding agents, 2-MeOE2, colchicine, STX140, ENMD1198 and STX243 was unaffected by the changes in class III β-tubulin expression.Conclusion:These data indicate that the effect of class III β-tubulin overexpression may depend on where the drug’s binding site is located on the tubulin. Therefore, this study highlights for the first time the potential key role of targeting the colchicine-binding site, to develop new treatment modalities for taxane-refractory breast cancer.


International Journal of Cancer | 2004

Inhibition of in vitro angiogenesis by 2-methoxy- and 2-ethyl-estrogen sulfamates

Simon P. Newman; Mathew P. Leese; Atul Purohit; David James; Catherine E. Rennie; Barry V. L. Potter; Michael J. Reed

Sulfamoylation of 2‐methoxyestrone (2‐MeOE1) was shown previously to enhance its potency as an anti‐proliferative agent against breast cancer cells. We have examined the ability of a series of 2‐methoxyestradiol (2‐MeOE2) and 2‐ethylestradiol (2‐EtE2) sulfamates to inhibit angiogenesis in vitro. 2‐MeOE2 bis‐sulfamate and 2‐EtE2 sulfamate were potent inhibitors of human umbilical vein endothelial cell (HUVEC) proliferation with IC50 values of 0.05 μM and 0.01 μM, respectively. A novel co‐culture system, in which endothelial cells were cultured in a matrix of human dermal fibroblasts, was also used to assess the anti‐angiogenic potential of these drugs. In this system endothelial cells proliferate and migrate through the culture matrix to form tubule structures. Whereas 2‐MeOE2 (1.0 μM) caused a small reduction in tubule formation, both 2‐MeOE2 bis‐sulfamate (0.1 μM) and 2‐EtE2 sulfamate (0.1 μM) almost completely abolished tubule formation. 2‐MeOE2 bis‐sulfamate and 2‐EtE2 sulfamate both induced BCL‐2 phosphorylation, p53 protein expression and apoptosis in HUVECs. Microarray analysis of a limited number of genes known to be involved in the angiogenic process did not show any gross changes in cells treated with the 2‐substituted estrogens. The sulfamoylated derivatives of 2‐MeOE2 and 2‐EtE2 are potent inhibitors of in vitro angiogenesis and both compounds should have therapeutic potential.


The Journal of Steroid Biochemistry and Molecular Biology | 2003

Steroid sulphatase inhibitors for breast cancer therapy.

Atul Purohit; L.W.L. Woo; Surinder K. Chander; Simon P. Newman; C Ireson; Yaik T. Ho; A Grasso; Matthew Paul Leese; Barry V. L. Potter; Michael J. Reed

In contrast to aromatase inhibitors, which are now in clinical use, the development of steroid sulphatase (STS) inhibitors for breast cancer therapy is still at an early stage. STS regulates the formation of oestrone from oestrone sulphate (E1S) but also controls the hydrolysis of dehydroepiandrosterone sulphate (DHEA-S). DHEA can be reduced to 5-androstenediol (Adiol), a steroid with potent oestrogenic properties. The active pharmacophore for potent STS inhibitors has now been identified, i.e. a sulphamate ester group linked to an aryl ring. This has led to the development of a number of STS inhibitors, some of which are due to enter Phase I trials in the near future. Such first generation inhibitors include the tricyclic coumarin-based 667 COUMATE. Aryl sulphamates, such as 667 COUMATE, are taken up by red blood cells (rbc), binding to carbonic anhydrase II (CA II), and transit the liver without undergoing first-pass inactivation. 667 COUMATE is also a potent inhibitor of CA II activity with an IC50 of 17 nM. Second generation STS inhibitors, such as 2-methoxyoestradiol bis-sulphamate (2-MeOE2bisMATE), in addition to inhibiting STS activity, also inhibit the growth of oestrogen receptor negative (ER-) tumours in mice and are anti-angiogenic. As the active pharmacaphores for the inhibition of aromatase and STS are now known it may be possible to develop third generation inhibitors that are capable of inhibiting the activities of both enzymes. Whilst exploring the potential of such a strategy it was discovered that 667 COUMATE possessed weak aromatase inhibitory properties with an IC50 of 300 nM in JEG-3 cells. The identification of potent STS inhibitors will allow the therapeutic potential of this new class of drug to be explored in post-menopausal women with hormone-dependent breast cancer. Second generation inhibitors, such as 2-MeOE2bisMATE, which also inhibit the growth of ER- tumours should be active against a wide range of cancers.


Biochemical and Biophysical Research Communications | 2003

Inhibition of carbonic anhydrase II by steroidal and non-steroidal sulphamates.

Yaik T. Ho; Atul Purohit; Nigel Vicker; Simon P. Newman; James J. Robinson; Matthew Paul Leese; Dharshini Ganeshapillai; L.W.L. Woo; Barry V. L. Potter; Michael J. Reed

Carbonic anhydrases (CAs) are expressed by many solid tumours where they may act to confer a growth advantage on malignant tissues. In this study we have examined the ability of a series of steroidal and non-steroidal sulphamates (originally developed as steroid sulphatase inhibitors) and related compounds to inhibit human CAII (hCAII) activity in vitro. Using a 96-well plate assay, oestrone-3-O-sulphamate (EMATE) and two coumarin-based sulphamate drugs (667 COUMATE and STX 118) were found to have IC(50) values of 25-59 nM for the inhibition of hCAII activity. These compounds therefore have a similar CAII inhibitory potency to that of acetazolamide (IC(50)=25 nM), a known hCAII inhibitor. Docking studies have been performed with selected compounds to the crystal structure of hCAII and excellent correlation of scores with biological activity was observed. This agrees with our recent observations when we were the first to report the inhibition of hCAII by STS inhibitors. These studies and initial results with docking to the crystal structure of the extracellular domain of hCAXII indicate that the STS sulphamate ester inhibitors should also be interesting candidates to pursue as inhibitors of CA isozymes that are over-expressed in human tumours.


PLOS ONE | 2011

Type 2 Diabetes Is Associated with Reduced ATP-Binding Cassette Transporter A1 Gene Expression, Protein and Function

Dipesh C. Patel; Christiane Albrecht; Darrell V. Pavitt; Vijay Paul; Celine Pourreyron; Simon P. Newman; Ian F. Godsland; Jonathan Valabhji; Desmond G. Johnston

Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.


Cancer Research | 2006

The role of 17β-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells

Simon P. Newman; Christopher R. Ireson; Helena J. Tutill; Joanna M. Day; Michael Parsons; Mathew P. Leese; Barry V. L. Potter; Michael J. Reed; Atul Purohit

The bis-sulfamoylated derivative of 2-methoxyestradiol (2-MeOE2), 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE), has shown potent antiproliferative and antiangiogenic activity in vitro and inhibits tumor growth in vivo. 2-MeOE2bisMATE is bioavailable, in contrast to 2-MeOE2 that has poor bioavailability. In this study, we have examined the role of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) type 2 in the metabolism of 2-MeOE2. In MDA-MB-231 cells, which express high levels of 17beta-HSD type 2, and in MCF-7 cells transfected with 17beta-HSD type 2, high-performance liquid chromatography analysis showed that a significant proportion of 2-MeOE2 was metabolized to inactive 2-methoxyestrone. Furthermore, MCF-7 cells transfected with 17beta-HSD type 2 were protected from the cytotoxic effects of 2-MeOE2. In contrast, no significant metabolism of 2-MeOE2bisMATE was detected in transfected cells and 17beta-HSD type 2 transfection did not offer protection against 2-MeOE2bisMATE cytotoxicity. This study may go some way to explaining the poor bioavailability of 2-MeOE2, as the gastrointestinal mucosa expresses high levels of 17beta-HSD type 2. In addition, this study shows the value of synthesizing sulfamoylated derivatives of 2-MeOE2 with C17-position modifications as these compounds have improved bioavailability and potency both in vitro and in vivo.


Clinical Cancer Research | 2006

In vivo Efficacy of STX213, A Second-Generation Steroid Sulfatase Inhibitor, for Hormone-Dependent Breast Cancer Therapy

Paul A. Foster; Simon P. Newman; Surinder K. Chander; Chloe Stengel; Roma Jhalli; Lawrence L.W. Woo; Barry V. L. Potter; Michael J. Reed; Atul Purohit

Purpose: Steroid sulfatase (STS) inhibitors that can decrease or prevent the biosynthesis of estrogenic steroids via the sulfatase route may play an important role in the treatment of breast cancer. We compare the in vivo efficacy of two potent STS inhibitors, STX64 and STX213, in a xenograft breast cancer model. Experimental Design: MCF-7 cells stably expressing STS cDNA (MCF-7STS) were generated. Ovariectomized MF-1 female nude mice receiving s.c. injections of estradiol sulfate (E2S) and bearing both MCF-7STS and wild-type MCF-7 (MCF-7WT) tumors were orally treated with STX64 and STX213. Treatment was given for 49 days followed by a recovery period of 35 days in which animals received only E2S. Mice were weighed, and tumor measurements were taken weekly. Results: STX64 and STX213 exhibited potent STS inhibition in vivo. However, STX213 showed a greater duration of activity. In vehicle-treated nude mice receiving E2S, tumor volumes increased 5.5-fold for MCF-7WT and 3.8-fold for MCF-7STS after 49 days compared with day 0. MCF-7WT tumor growth was reduced by 56% by STX213 over the dosing period, and subsequent growth was retarded during the recovery period. All treatments fully inhibited growth of MCF-7STS tumors, and recovery of these tumors was significantly retarded (P < 0.01). All compounds completely inhibited liver and tumor STS activity. Additionally, STS mRNA expression in the MCF-7STS tumors directly correlated with the corresponding STS enzyme activity. Conclusions: This study indicates that STS inhibitors attenuate hormone-dependent human breast cancer growth and therefore offer a potentially novel treatment for this condition.

Collaboration


Dive into the Simon P. Newman's collaboration.

Top Co-Authors

Avatar

Atul Purohit

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge