Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon P. Preston is active.

Publication


Featured researches published by Simon P. Preston.


Bellman Prize in Mathematical Biosciences | 2011

Effect of delay in a Lotka–Volterra type predator–prey model with a transmissible disease in the predator species

Mainul Haque; Sahabuddin Sarwardi; Simon P. Preston; Ezio Venturino

We consider a system of delay differential equations modeling the predator-prey ecoepidemic dynamics with a transmissible disease in the predator population. The time lag in the delay terms represents the predator gestation period. We analyze essential mathematical features of the proposed model such as local and global stability and in addition study the bifurcations arising in some selected situations. Threshold values for a few parameters determining the feasibility and stability conditions of some equilibria are discovered and similarly a threshold is identified for the disease to die out. The parameter thresholds under which the system admits a Hopf bifurcation are investigated both in the presence of zero and non-zero time lag. Numerical simulations support our theoretical analysis.


Journal of Experimental Botany | 2015

Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light?

Renata Retkute; Stephanie E. Smith-Unna; Robert W. Smith; Oliver E. Jensen; Giles N. Johnson; Simon P. Preston; Erik H. Murchie

Plants have evolved complex mechanisms to balance the efficient use of absorbed light energy in photosynthesis with the capacity to use that energy in assimilation, so avoiding potential damage from excess light. This is particularly important under natural light, which can vary according to weather, solar movement and canopy movement. Photosynthetic acclimation is the means by which plants alter their leaf composition and structure over time to enhance photosynthetic efficiency and productivity. However there is no empirical or theoretical basis for understanding how leaves track historic light levels to determine acclimation status, or whether they do this accurately. We hypothesized that in fluctuating light (varying in both intensity and frequency), the light-response characteristics of a leaf should adjust (dynamically acclimate) to maximize daily carbon gain. Using a framework of mathematical modelling based on light-response curves, we have analysed carbon-gain dynamics under various light patterns. The objective was to develop new tools to quantify the precision with which photosynthesis acclimates according to the environment in which plants exist and to test this tool on existing data. We found an inverse relationship between the optimal maximum photosynthetic capacity and the frequency of low to high light transitions. Using experimental data from the literature we were able to show that the observed patterns for acclimation were consistent with a strategy towards maximizing daily carbon gain. Refinement of the model will further determine the precision of acclimation.


Plant Physiology | 2015

High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field.

Renata Retkute; Michael P. Pound; John Foulkes; Simon P. Preston; Oliver E. Jensen; Tony P. Pridmore; Erik H. Murchie

A digital reconstruction method models the effect of photoinhibition on daily canopy photosynthesis in three contrasting wheat canopies. Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations of light in space and time. Here, we evaluate the effects of photoinhibition on long-term carbon gain (over 1 d) in three different wheat (Triticum aestivum) lines, which are architecturally diverse. We use a unique method for accurate digital three-dimensional reconstruction of canopies growing in the field. The reconstruction method captures unique architectural differences between lines, such as leaf angle, curvature, and leaf density, thus providing a sensitive method of evaluating the productivity of actual canopy structures that previously were difficult or impossible to obtain. We show that complex data on light distribution can be automatically obtained without conventional manual measurements. We use a mathematical model of photosynthesis parameterized by field data consisting of chlorophyll fluorescence, light response curves of carbon dioxide assimilation, and manual confirmation of canopy architecture and light attenuation. Model simulations show that photoinhibition alone can result in substantial reduction in carbon gain, but this is highly dependent on exact canopy architecture and the diurnal dynamics of photoinhibition. The use of such highly realistic canopy reconstructions also allows us to conclude that even a moderate change in leaf angle in upper layers of the wheat canopy led to a large increase in the number of leaves in a severely light-limited state.


Statistics and Computing | 2015

Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution

Simon R. White; Theodore Kypraios; Simon P. Preston

Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential techniques cannot be used. In such settings, Bayesian inference can be performed using Approximate Bayesian Computation (ABC). However, in spite of many recent developments to ABC methodology, in many applications the computational cost of ABC necessitates the choice of summary statistics and tolerances that can potentially severely bias the estimate of the posterior.We propose a new “piecewise” ABC approach suitable for discretely observed Markov models that involves writing the posterior density of the parameters as a product of factors, each a function of only a subset of the data, and then using ABC within each factor. The approach has the advantage of side-stepping the need to choose a summary statistic and it enables a stringent tolerance to be set, making the posterior “less approximate”. We investigate two methods for estimating the posterior density based on ABC samples for each of the factors: the first is to use a Gaussian approximation for each factor, and the second is to use a kernel density estimate. Both methods have their merits. The Gaussian approximation is simple, fast, and probably adequate for many applications. On the other hand, using instead a kernel density estimate has the benefit of consistently estimating the true piecewise ABC posterior as the number of ABC samples tends to infinity. We illustrate the piecewise ABC approach with four examples; in each case, the approach offers fast and accurate inference.


Frontiers in Plant Science | 2016

The 4-dimensional plant : effects of wind-induced canopy movement on light fluctuations and photosynthesis

Renata Retkute; Simon P. Preston; Oliver E. Jensen; Michael P. Pound; Tony P. Pridmore; Erik H. Murchie

Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for accurate modeling of mechanical canopy excitation (here coined the 4-dimensional plant) and some associated biological and applied implications of such techniques. We hypothesize that biomechanical plant properties are a specific adaptation to achieve wind-induced photosynthetic enhancement and we outline how traits facilitating canopy excitation could be used as a route for improving crop yield.


PLOS ONE | 2016

Does Mutual Interference Affect the Feeding Rate of Aphidophagous Coccinellids? A Modeling Perspective

Nikos E. Papanikolaou; Nikos Demiris; Panagiotis G. Milonas; Simon P. Preston; Theodore Kypraios

Mutual interference involves direct interactions between individuals of the same species that may alter their foraging success. Larvae of aphidophagous coccinellids typically stay within a patch during their lifetime, displaying remarkable aggregation to their prey. Thus, as larvae are exposed to each other, frequent encounters may affect their foraging success. A study was initiated in order to determine the effect of mutual interference in the coccinellids’ feeding rate. One to four 4th larval instars of the fourteen-spotted ladybird beetle Propylea quatuordecimpunctata were exposed for 6 hours into plastic containers with different densities of the black bean aphid, Aphis fabae, on potted Vicia faba plants. The data were used to fit a purely prey-dependent Holling type II model and its alternatives which account for interference competition and have thus far been underutilized, i.e. the Beddington-DeAngelis, the Crowley-Martin and a modified Hassell-Varley model. The Crowley-Martin mechanistic model appeared to be slightly better among the competing models. The results showed that although the feeding rate became approximately independent of predator density at high prey density, some predator dependence in the coccinellid’s functional response was observed at the low prey—high predator density combination. It appears that at low prey densities, digestion breaks are negligible so that the predators do waste time interfering with each other, whereas at high prey densities time loss during digestion breaks may fully accommodate the cost of interference, so that the time cost may be negligible.


Journal of The Royal Statistical Society Series C-applied Statistics | 2018

Bayesian model selection for the glacial-interglacial cycle

Jake Carson; Michel Crucifix; Simon P. Preston; Richard D. Wilkinson

A prevailing viewpoint in palaeoclimate science is that a single palaeoclimate record contains insufficient information to discriminate between most competing explanatory models. Results we present here suggest the contrary. Using SMC^2 combined with novel Brownian bridge type proposals for the state trajectories, we show that even with relatively short time series it is possible to estimate Bayes factors to sufficient accuracy to be able to select between competing models. The results show that Monte Carlo methodology and computer power have now advanced to the point where a full Bayesian analysis for a wide class of conceptual climate models is now possible. The results also highlight a problem with estimating the chronology of the climate record prior to further statistical analysis, a practice which is common in palaeoclimate science. Using two datasets based on the same record but with different estimated chronologies results in conflicting conclusions about the importance of the orbital forcing on the glacial cycle, and about the internal dynamics generating the glacial cycle, even though the difference between the two estimated chronologies is consistent with dating uncertainty. This highlights a need for chronology estimation and other inferential questions to be addressed in a joint statistical procedure.


Journal of Mathematical Biology | 2014

Modelling the regulation of telomere length: the effects of telomerase and G-quadruplex stabilising drugs

Bartholomäus V. Hirt; Jonathan A. D. Wattis; Simon P. Preston

Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available.


Statistics and Computing | 2012

Approximation of transition densities of stochastic differential equations by saddlepoint methods applied to small-time Ito---Taylor sample-path expansions

Simon P. Preston; Andrew T. A. Wood

Likelihood-based inference for parameters of stochastic differential equation (SDE) models is challenging because for most SDEs the transition density is unknown. We propose a method for estimating the transition density that involves expanding the sample path as an Ito–Taylor series, calculating the moment generating function of the retained terms in the Ito–Taylor expansion, then employing a saddlepoint approximation. We perform a numerical comparison with two other methods similarly based on small-time expansions and discuss the pros and cons of our new method relative to other approaches.


Statistics and Computing | 2018

An elliptically symmetric angular Gaussian distribution

P.J. Paine; Simon P. Preston; Michail Tsagris; Andrew T. A. Wood

We define a distribution on the unit sphere

Collaboration


Dive into the Simon P. Preston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renata Retkute

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Goulding

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Alexandra J. Townsend

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duncan Barrack

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge