Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon-Pierre Gravel is active.

Publication


Featured researches published by Simon-Pierre Gravel.


Cell Metabolism | 2013

mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation

Masahiro Morita; Simon-Pierre Gravel; Valérie Chénard; Kristina Sikström; Liang Zheng; Tommy Alain; Valentina Gandin; Daina Avizonis; Meztli Arguello; Chadi Zakaria; Shannon McLaughlan; Yann Nouët; Arnim Pause; Michael Pollak; Eyal Gottlieb; Ola Larsson; Julie St-Pierre; Ivan Topisirovic; Nahum Sonenberg

mRNA translation is thought to be the most energy-consuming process in the cell. Translation and energy metabolism are dysregulated in a variety of diseases including cancer, diabetes, and heart disease. However, the mechanisms that coordinate translation and energy metabolism in mammals remain largely unknown. The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates mRNA translation and other anabolic processes. We demonstrate that mTORC1 controls mitochondrial activity and biogenesis by selectively promoting translation of nucleus-encoded mitochondria-related mRNAs via inhibition of the eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Stimulating the translation of nucleus-encoded mitochondria-related mRNAs engenders an increase in ATP production capacity, a required energy source for translation. These findings establish a feed-forward loop that links mRNA translation to oxidative phosphorylation, thereby providing a key mechanism linking aberrant mTOR signaling to conditions of abnormal cellular energy metabolism such as neoplasia and insulin resistance.


Cancer and Metabolism | 2014

Metformin directly acts on mitochondria to alter cellular bioenergetics

Sylvia Andrzejewski; Simon-Pierre Gravel; Michael Pollak; Julie St-Pierre

BackgroundMetformin is widely used in the treatment of diabetes, and there is interest in ‘repurposing’ the drug for cancer prevention or treatment. However, the mechanism underlying the metabolic effects of metformin remains poorly understood.MethodsWe performed respirometry and stable isotope tracer analyses on cells and isolated mitochondria to investigate the impact of metformin on mitochondrial functions.ResultsWe show that metformin decreases mitochondrial respiration, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, cells treated with metformin become energetically inefficient, and display increased aerobic glycolysis and reduced glucose metabolism through the citric acid cycle. Conflicting prior studies proposed mitochondrial complex I or various cytosolic targets for metformin action, but we show that the compound limits respiration and citric acid cycle activity in isolated mitochondria, indicating that at least for these effects, the mitochondrion is the primary target. Finally, we demonstrate that cancer cells exposed to metformin display a greater compensatory increase in aerobic glycolysis than nontransformed cells, highlighting their metabolic vulnerability. Prevention of this compensatory metabolic event in cancer cells significantly impairs survival.ConclusionsTogether, these results demonstrate that metformin directly acts on mitochondria to limit respiration and that the sensitivity of cells to metformin is dependent on their ability to cope with energetic stress.


Cell Cycle | 2015

mTOR coordinates protein synthesis, mitochondrial activity and proliferation

Masahiro Morita; Simon-Pierre Gravel; Laura Hulea; Ola Larsson; Michael Pollak; Julie St-Pierre; Ivan Topisirovic

Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.


Journal of Immunology | 2006

Involvement of the IκB Kinase (IKK)-Related Kinases Tank-Binding Kinase 1/IKKi and Cullin-Based Ubiquitin Ligases in IFN Regulatory Factor-3 Degradation

Annie Bibeau-Poirier; Simon-Pierre Gravel; Jean-François Clément; Sébastien Rolland; Geneviève Rodier; Philippe Coulombe; John Hiscott; Nathalie Grandvaux; Sylvain Meloche; Marc J. Servant

Activation of the innate arm of the immune system following pathogen infection relies on the recruitment of latent transcription factors involved in the induction of a subset of genes responsible for viral clearance. One of these transcription factors, IFN regulatory factor 3 (IRF-3), is targeted for proteosomal degradation following virus infection. However, the molecular mechanisms involved in this process are still unknown. In this study, we show that polyubiquitination of IRF-3 increases in response to Sendai virus infection. Using an E1 temperature-sensitive cell line, we demonstrate that polyubiquitination is required for the observed degradation of IRF-3. Inactivation of NEDD8-activating E1 enzyme also results in stabilization of IRF-3 suggesting the NEDDylation also plays a role in IRF-3 degradation following Sendai virus infection. In agreement with this observation, IRF-3 is recruited to Cullin1 following virus infection and overexpression of a dominant-negative mutant of Cullin1 significantly inhibits the degradation of IRF-3 observed in infected cells. We also asked whether the C-terminal cluster of phosphoacceptor sites of IRF-3 could serve as a destabilization signal and we therefore measured the half-life of C-terminal phosphomimetic IRF-3 mutants. Interestingly, we found them to be short-lived in contrast to wild-type IRF-3. In addition, no degradation of IRF-3 was observed in TBK1−/− mouse embryonic fibroblasts. All together, these data demonstrate that virus infection stimulates a host cell signaling pathway that modulates the expression level of IRF-3 through its C-terminal phosphorylation by the IκB kinase-related kinases followed by its polyubiquitination, which is mediated in part by a Cullin-based ubiquitin ligase.


Journal of Virology | 2008

Phosphorylation of IRF-3 on Ser 339 Generates a Hyperactive Form of IRF-3 through Regulation of Dimerization and CBP Association

Jean-François Clément; Annie Bibeau-Poirier; Simon-Pierre Gravel; Nathalie Grandvaux; Eric Bonneil; Pierre Thibault; Sylvain Meloche; Marc J. Servant

ABSTRACT The IκB kinase-related kinases, TBK1 and IKKi, were recently shown to be responsible for the C-terminal phosphorylation of IRF-3. However, the identity of the phosphoacceptor site(s) targeted by these two kinases remains unclear. Using a biological assay based on the IRF-3-mediated production of antiviral cytokines, we demonstrate here that all Ser/Thr clusters of IRF-3 are required for its optimal transactivation capacity. In vitro kinase assays using full-length His-IRF-3 as a substrate combined with mass spectrometry analysis revealed that serine 402 and serine 396 are directly targeted by TBK1. Analysis of Ser/Thr-to-Ala mutants revealed that the S396A mutation, located in cluster II, abolished IRF-3 homodimerization, CBP association, and nuclear accumulation. However, production of antiviral cytokines was still present in IRF-3 S396A-expressing cells. Interestingly, mutation of serine 339, which is involved in IRF-3 stability, also abrogated CBP association and dimerization without affecting gene transactivation as long as serine 396 remained available for phosphorylation. Complementation of IRF-3-knockout mouse embryonic fibroblasts also revealed a compensatory mechanism of serine 339 and serine 396 in the ability of IRF-3 to induce expression of the interferon-stimulated genes ISG56 and ISG54. These data lead us to reconsider the current model of IRF-3 activation. We propose that conventional biochemical assays used to measure IRF-3 activation are not sensitive enough to detect the small fraction of IRF-3 needed to elicit a biological response. Importantly, our study establishes a molecular link between the role of serine 339 in IRF-3 homodimerization, CBP association, and its destabilization.


Cancer and Metabolism | 2013

PGC-1α supports glutamine metabolism in breast cancer

Shawn McGuirk; Simon-Pierre Gravel; Geneviève Deblois; David J. Papadopoli; Brandon Faubert; André Wegner; Karsten Hiller; Daina Avizonis; Uri David Akavia; Russell G. Jones; Vincent Giguère; Julie St-Pierre

BackgroundGlutamine metabolism is a central metabolic pathway in cancer. Recently, reductive carboxylation of glutamine for lipogenesis has been shown to constitute a key anabolic route in cancer cells. However, little is known regarding central regulators of the various glutamine metabolic pathways in cancer cells.MethodsThe impact of PGC-1α and ERRα on glutamine enzyme expression was assessed in ERBB2+ breast cancer cell lines with quantitative RT-PCR, chromatin immunoprecipitation, and immunoblotting experiments. Glutamine flux was quantified using 13C-labeled glutamine and GC/MS analyses. Functional assays for lipogenesis were performed using 14C-labeled glutamine. The expression of glutamine metabolism genes in breast cancer patients was determined by bioinformatics analyses using The Cancer Genome Atlas.ResultsWe show that the transcriptional coactivator PGC-1α, along with the transcription factor ERRα, is a positive regulator of the expression of glutamine metabolism genes in ERBB2+ breast cancer. Indeed, ERBB2+ breast cancer cells with increased expression of PGC-1α display elevated expression of glutamine metabolism genes. Furthermore, ERBB2+ breast cancer cells with reduced expression of PGC-1α or when treated with C29, a pharmacological inhibitor of ERRα, exhibit diminished expression of glutamine metabolism genes. The biological relevance of the control of glutamine metabolism genes by the PGC-1α/ERRα axis is demonstrated by consequent regulation of glutamine flux through the citric acid cycle. PGC-1α and ERRα regulate both the canonical citric acid cycle (forward) and the reductive carboxylation (reverse) fluxes; the latter can be used to support de novo lipogenesis reactions, most notably in hypoxic conditions. Importantly, murine and human ERBB2+ cells lines display a significant dependence on glutamine availability for their growth. Finally, we show that PGC-1α expression is positively correlated with that of the glutamine pathway in ERBB2+ breast cancer patients, and high expression of this pathway is associated with reduced patient survival.ConclusionsThese data reveal that the PGC-1α/ERRα axis is a central regulator of glutamine metabolism in ERBB2+ breast cancer. This novel regulatory link, as well as the marked reduction in patient survival time associated with increased glutamine pathway gene expression, suggests that targeting glutamine metabolism may have therapeutic potential in the treatment of ERBB2+ breast cancer.


Journal of Biological Chemistry | 2006

The Proinflammatory Actions of Angiotensin II Are Dependent on p65 Phosphorylation by the IκB Kinase Complex

Annie Douillette; Annie Bibeau-Poirier; Simon-Pierre Gravel; Jean-François Clément; Valérie Chénard; Pierre Moreau; Marc J. Servant

The vasoactive hormone angiotensin II (Ang II) probably triggers inflammatory cardiovascular diseases by activating transcription factors such as NF-κB. We describe here a novel mode of NF-κB activation in cultured vascular smooth muscle cells exposed to Ang II. Ang II treatment resulted in an increase in the phosphotransferase activity of the IKK complex, which was mediated through the AT1 receptor subtype. The typical phosphorylation and proteasome-dependent degradation of the NF-κB inhibitor IκBα were not observed. Rather, Ang II treatment of vascular smooth muscle cells led to the phosphorylation of p65 on serine 536, a signal detected in both the cytoplasm and the nuclear compartments. The use of pharmacological inhibitors that inhibit the activation of MEK by Ang II revealed that phosphorylation of p65 on serine 536 did not require the MEK-ERK-RSK signaling pathway. On the other hand, specifically targeting the IKKβ subunit of the IKK complex by overexpression of a dominant negative version of IKKβ (IKKβ K44A) or silencing RNA technology demonstrated that the IKKβ subunit of the IKK complex was responsible for the detected phosphoserine 536 signal in Ang II-treated cells. Characterization of the signaling pathway leading to activation of the IKK complex by Ang II revealed that neither epidermal growth factor receptor transactivation nor the phosphatidylinositol 3-kinase-AKT signaling cascade were involved. Collectively, our data demonstrate that the proinflammatory activity of Ang II is independent of the classical pathway leading to IκBα phosphorylation and degradation but clearly depends on the recruitment of an IKK complex signaling cascade leading to phosphorylation of p65 on serine 536.


Cancer Research | 2014

Serine Deprivation Enhances Antineoplastic Activity of Biguanides

Simon-Pierre Gravel; Laura Hulea; Nader Toban; Elena Birman; Marie-José Blouin; Mahvash Zakikhani; Yunhua Zhao; Ivan Topisirovic; Julie St-Pierre; Michael Pollak

Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism.


Cell Reports | 2016

The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer

Étienne Audet-Walsh; David J. Papadopoli; Simon-Pierre Gravel; Tracey Yee; Gaëlle Bridon; Maxime Caron; Guillaume Bourque; Vincent Giguère; Julie St-Pierre

Reprogramming of cellular metabolism plays a central role in fueling malignant transformation, and AMPK and the PGC-1α/ERRα axis are key regulators of this process. The intersection of gene-expression and binding-event datasets for breast cancer cells shows that activation of AMPK significantly increases the expression of PGC-1α/ERRα and promotes the binding of ERRα to its cognate sites. Unexpectedly, the data also reveal that ERRα, in concert with PGC-1α, negatively regulates the expression of several one-carbon metabolism genes, resulting in substantial perturbations in purine biosynthesis. This PGC-1α/ERRα-mediated repression of one-carbon metabolism promotes the sensitivity of breast cancer cells and tumors to the anti-folate drug methotrexate. These data implicate the PGC-1α/ERRα axis as a core regulatory node of folate cycle metabolism and further suggest that activators of AMPK could be used to modulate this pathway in cancer.


Metabolomics | 2013

The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS

Orval Mamer; Simon-Pierre Gravel; Luc Choinière; Valérie Chénard; Julie St-Pierre; Daina Avizonis

The quantitative profiling of the organic acid intermediates of the citric acid cycle (CAC) presents a challenge due to the lack of commercially available internal standards for all of the organic acid intermediates. We developed an analytical method that enables the quantitation of all the organic acids in the CAC in a single stable isotope dilution GC/MS analysis with deuterium-labeled analogs used as internal standards. The unstable α-keto acids are rapidly reduced with sodium borodeuteride to the corresponding stable α-deutero-α-hydroxy acids and these, along with their unlabeled analogs and other CAC organic acid intermediates, are converted to their tert-butyldimethylsilyl derivatives. Selected ion monitoring is employed with electron ionization. We validated this method by treating an untransformed mouse mammary epithelial cell line with well-known mitochondrial toxins affecting the electron transport chain and ATP synthase, which resulted in profound perturbations of the concentration of CAC intermediates.

Collaboration


Dive into the Simon-Pierre Gravel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge