Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Plank is active.

Publication


Featured researches published by Simon Plank.


Remote Sensing | 2014

Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1

Simon Plank

Fast crisis response after natural disasters, such as earthquakes and tropical storms, is necessary to support, for instance, rescue, humanitarian, and reconstruction operations in the crisis area. Therefore, rapid damage mapping after a disaster is crucial, i.e., to detect the affected area, including grade and type of damage. Thereby, satellite remote sensing plays a key role due to its fast response, wide field of view, and low cost. With the increasing availability of remote sensing data, numerous methods have been developed for damage assessment. This article gives a comprehensive review of these techniques focusing on multi-temporal SAR procedures for rapid damage assessment: interferometric coherence and intensity correlation. The review is divided into six parts: First, methods based on coherence; second, the ones using intensity correlation; and third, techniques using both methodologies combined to increase the accuracy of the damage assessment are reviewed. Next, studies using additional data (e.g., GIS and optical imagery) to support the damage assessment and increase its accuracy are reported. Moreover, selected studies on post-event SAR damage assessment techniques and examples of other applications of the interferometric coherence are presented. Then, the preconditions for a successful worldwide application of multi-temporal SAR methods for damage assessment and the limitations of current SAR satellite missions are reported. Finally, an outlook to the Sentinel-1 SAR mission shows possible solutions of these limitations, enabling a worldwide applicability of the presented damage assessment methods.


Journal of remote sensing | 2016

Sentinel-1-based flood mapping: a fully automated processing chain

André Twele; Wenxi Cao; Simon Plank; Sandro Martinis

ABSTRACT This article presents an automated Sentinel-1-based processing chain designed for flood detection and monitoring in near-real-time (NRT). Since no user intervention is required at any stage of the flood mapping procedure, the processing chain allows deriving time-critical disaster information in less than 45 min after a new data set is available on the Sentinel Data Hub of the European Space Agency (ESA). Due to the systematic acquisition strategy and high repetition rate of Sentinel-1, the processing chain can be set up as a web-based service that regularly informs users about the current flood conditions in a given area of interest. The thematic accuracy of the thematic processor has been assessed for two test sites of a flood situation at the border between Greece and Turkey with encouraging overall accuracies between 94.0% and 96.1% and Cohen’s kappa coefficients (κ) ranging from 0.879 to 0.910. The accuracy assessment, which was performed separately for the standard polarizations (VV/VH) of the interferometric wide swath (IW) mode of Sentinel-1, further indicates that under calm wind conditions, slightly higher thematic accuracies can be achieved by using VV instead of VH polarization data.


Journal of remote sensing | 2012

Pre-survey suitability evaluation of the differential synthetic aperture radar interferometry method for landslide monitoring

Simon Plank; J. Singer; Christian Minet; Kurosch Thuro

The active remote-sensing technique differential radar interferometry (D-InSAR) is a powerful method for detection and deformation monitoring of landslides. But the radar-specific imaging geometry causes specific spatial distortions in radar images (as e.g. the layover and shadowing effect), which have a negative impact on the suitability of these images for D-InSAR applications. To address this issue, we present a geographical information system (GIS) procedure to accurately predict the areas in which layover and shadowing will occur, before the area of interest is recorded by radar. Additionally, the percentage of measurability of movement of a potential landslide can be ascertained. In the third part of the GIS procedure, the main types of land cover are classified in regard to their influence on applicability of the D-InSAR technique, depending on the characteristics of the sensor used. The results of the analyses are objective pre-survey estimation of the potential applicability of the D-InSAR technique for landslide monitoring prior to the costly investment of a radar survey.


Remote Sensing | 2016

Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data

Simon Plank; André Twele; Sandro Martinis

Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR) data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR) SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.


Remote Sensing | 2016

Cultural Heritage Sites in Danger—Towards Automatic Damage Detection from Space

Daniele Cerra; Simon Plank; Vasiliki Lysandrou; Jiaojiao Tian

The intentional damage to local Cultural Heritage sites carried out in recent months by the Islamic State have received wide coverage from the media worldwide. Earth Observation data provide important information to assess this damage in such non-accessible areas, and automated image processing techniques will be needed to speed up the analysis if a fast response is desired. This paper shows the first results of applying fast and robust change detection techniques to sensitive areas, based on the extraction of textural information and robust differences of brightness values related to pre- and post-disaster satellite images. A map highlighting potentially damaged buildings is derived, which could help experts at timely assessing the damages to the Cultural Heritage sites of interest. Encouraging results are obtained for two archaeological sites in Syria and Iraq.


Remote Sensing | 2014

Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

Simon Plank; Alexander Mager; Elisabeth Schoepfer

In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR) and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery) and the possibility of detailed land use classification (vs. single-pol SAR). The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment). Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are determined. The high transferability of the methodology is proved by an application to a second SAR acquisition.


Journal of remote sensing | 2017

Mapping of flooded vegetation by means of polarimetric Sentinel-1 and ALOS-2/PALSAR-2 imagery

Simon Plank; Martin Jüssi; Sandro Martinis; André Twele

ABSTRACT This article presents for the first time the combination of dual-polarimetric C-band Sentinel-1 synthetic aperture radar (SAR) data and quad-polarimetric L-band ALOS-2/PALSAR-2 imagery for mapping of flooded areas with a special focus on flooded vegetation. L-band SAR data is well suited for mapping of flooded vegetation, while C-band enables an accurate extraction open water areas. Polarimetric decomposition-based unsupervised Wishart classification is combined with object-based post-classification refinement and the integration of spatial contextual information and global auxiliary data. In eight different scenarios, focusing on single datasets or fusion of classification results of several ones, respectively, different polarimetric decomposition and classification principles, including the entropy/anisotropy/alpha and the Freeman–Durden–Wishart classification, were investigated. The helix scattering component of the Yamaguchi decomposition, derived from ALOS-2 imagery, showed high suitability to refine the Sentinel-1-based detection of flooded vegetation. A test site at the Evros River (Greek/Turkish border region) was chosen, which was affected by a flooding event that occurred in spring 2015. The validation was based on high spatial resolution optical WorldView-2 imagery acquired with short temporal delay to the SAR data.


International Journal of Applied Earth Observation and Geoinformation | 2018

An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data

Yu Li; Sandro Martinis; Simon Plank; Ralf Ludwig

Abstract In this paper, a two-step automatic change detection chain for rapid flood mapping based on Sentinel-1 Synthetic Aperture Radar (SAR) data is presented. First, a reference image is selected from a set of potential image candidates via a Jensen-Shannon (JS) divergence-based index. Second, saliency detection is applied on log-ratio data to derive the prior probabilities of changed and unchanged classes for initializing the following expectation-maximization (EM) based generalized Gaussian mixture model (GGMM). The saliency-guided GGMM is capable of capturing the primary pixel-based change information and handling highly imbalanced datasets. A fully-connected conditional random field (FCRF) model, which takes long-range pairwise potential connections into account, is integrated to remove the ambiguities of the saliency-guided GGMM and to achieve the final change map. The whole process chain is automatic with an efficient computation. The proposed approach was validated on flood events at the Evros River, Greece and the Wharfe River and Ouse River in York, United Kingdom. Kappa coefficients (k) of 0.9238 and 0.8682 were obtained respectively. The sensitivity analysis underlines the robustness of the proposed approach for rapid flood mapping.


Remote Sensing | 2017

A Fully Automatic Instantaneous Fire Hotspot Detection Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor

Simon Plank; Eva-Maria Fuchs; Corinne Frey

The German Aerospace Center’s (DLR) TIMELINE project aims to develop an operational processing and data management environment to process 30 years of National Oceanic and Atmospheric Administration (NOAA)—Advanced Very High Resolution Radiometer (AVHRR) raw data into L1b, L2 and L3 products. This article presents the current status of the fully automated L2 active fire hotspot detection processor, which is based on single-temporal datasets in orbit geometry. Three different probability levels of fire detection are provided. The results of the hotspot processor were tested with simulated fire data. Moreover, the processing results of real AVHRR imagery were validated with five different datasets: MODIS hotspots, visually confirmed MODIS hotspots, fire-news data from the European Forest Fire Information System (EFFIS), burnt area mapping of the Copernicus Emergency Management Service (EMS) and data of the Piedmont fire database.


Remote Sensing | 2018

A Fully Automatic Burnt Area Mapping Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor

Simon Plank; Sandro Martinis

The German Aerospace Center’s (DLR) TIMELINE project (“Time Series Processing of Medium Resolution Earth Observation Data Assessing Long-Term Dynamics in our Natural Environment”) aims to develop an operational processing and data management environment to process 30 years of National Oceanic and Atmospheric Administration (NOAA)—Advanced Very High-Resolution Radiometer (AVHRR) raw data into Level (L) 1b, L2, and L3 products. This article presents the current status of the fully automated L3 burnt area mapping processor, which is based on multi-temporal datasets. The advantages of the proposed approach are (I) the combined use of different indices to improve the classification result, (II) the provision of a fully automated processor, (III) the generation and usage of an up-to-date cloud-free pre-fire dataset, (IV) classification with adaptive thresholding, and (V) the assignment of five different probability levels to the burnt areas detected. The results of the AVHRR data-based burn scar mapping processor were validated with the Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area product MCD64 at four different European study sites. In addition, the accuracy of the AVHRR-based classification and that of the MCD64 itself were assessed by means of Landsat imagery.

Collaboration


Dive into the Simon Plank's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Twele

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

Wenxi Cao

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

Massimo Ramondini

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Pierluigi Confuorto

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Domenico Calcaterra

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Fischer

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge