Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Pulley is active.

Publication


Featured researches published by Simon Pulley.


Journal of Environmental Management | 2017

Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users

A.L. Collins; Simon Pulley; Ian D L Foster; Allen C. Gellis; Paolo Porto; A.J. Horowitz

The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.


Journal of Environmental Management | 2017

The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs

Simon Pulley; Ian D L Foster; A.L. Collins

The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies.


Earth Surface Processes and Landforms | 2017

Can channel banks be the dominant source of fine sediment in a UK river?: an example using 137Cs to interpret sediment yield and sediment source

Simon Pulley; Ian D L Foster

Abstract Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km−2 yr−1 and post‐1963 was approximately 11.9 t km−2 yr−1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km−2 yr−1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright


Science of The Total Environment | 2018

Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software

Simon Pulley; A.L. Collins

The mitigation of diffuse sediment pollution requires reliable provenance information so that measures can be targeted. Sediment source fingerprinting represents one approach for supporting these needs, but recent methodological developments have resulted in an increasing complexity of data processing methods rendering the approach less accessible to non-specialists. A comprehensive new software programme (SIFT; SedIment Fingerprinting Tool) has therefore been developed which guides the user through critical data analysis decisions and automates all calculations. Multiple source group configurations and composite fingerprints are identified and tested using multiple methods of uncertainty analysis. This aims to explore the sediment provenance information provided by the tracers more comprehensively than a single model, and allows for model configurations with high uncertainties to be rejected. This paper provides an overview of its application to an agricultural catchment in the UK to determine if the approach used can provide a reduction in uncertainty and increase in precision. Five source group classifications were used; three formed using a k-means cluster analysis containing 2, 3 and 4 clusters, and two a-priori groups based upon catchment geology. Three different composite fingerprints were used for each classification and bi-plots, range tests, tracer variability ratios and virtual mixtures tested the reliability of each model configuration. Some model configurations performed poorly when apportioning the composition of virtual mixtures, and different model configurations could produce different sediment provenance results despite using composite fingerprints able to discriminate robustly between the source groups. Despite this uncertainty, dominant sediment sources were identified, and those in close proximity to each sediment sampling location were found to be of greatest importance. This new software, by integrating recent methodological developments in tracer data processing, guides users through key steps. Critically, by applying multiple model configurations and uncertainty assessment, it delivers more robust solutions for informing catchment management of the sediment problem than many previously used approaches.


Journal of Soils and Sediments | 2018

The invasive alien plant, Impatiens glandulifera (Himalayan Balsam), and increased soil erosion: causation or association? Case studies from a river system in Switzerland and the UK

Philip Greenwood; Patrick Baumann; Simon Pulley; Nikolaus J. Kuhn

PurposeA monitoring investigation undertaken along the River Ibach, northwest Switzerland over the winter 2012/2013, found that riparian areas recently supporting the invasive plant Himalayan Balsam (HB) recorded significantly higher erosion rates than nearby uninvaded areas. This communication sythesises the latest findings about the influence of HB on sedimentation processes, again, from the Ibach, but also from a second river system in southwest UK.Materials and methodsErosion pins, a micro-profile bridge and a digital caliper were used to measure changes in soil surface profile (SSP) at selected riparian areas supporting HB plants along both rivers. Values were statistically compared against equivalent data recorded from nearby reference areas supporting mixed perennial vegetation. A comparison of source and sediment geochemistry was also undertaken on soil from HB-invaded and uninvaded floodplain areas along the Ibach, to assess the potential for identifying the extent to which either group acts as a sediment source.Results and discussionErosion pin data indicate that soil loss from HB-colonised areas was significantly greater than soil loss from reference areas in two out of the four periods at the River Ibach site, and in two out of three measurement periods at the River Taw site. Colonisation of new HB sites may initially occur by hydrochorous processes, but HB plants may increase colonisation potential by trapping additional fine sediment and organic matter, including viable HB seeds. Geochemical results from the Ibach suggest that high inputs of suspended sediment originate from sources close to the river channel, but HB-invaded floodplain sources have geochemical properties that are most similar to suspended river sediment.ConclusionsThe findings from both rivers led us to rethink our original hypothesis; that HB promotes soil erosion, to an amended hypothesis in which HB may be associated with areas where high erosion is sometimes recorded. Whilst initial colonisation may be due to hydrochorous processes, as HB becomes increasingly established, the displacement of perennial vegetation increases the risk of erosion during the winter period when live HB plants are absent. Preliminary geochemical findings of floodplain soils supporting different vegetation types along the Ibach tentatively suggest that at least some material originating from HB sites may enter the watercourse.


Geomorphology | 2015

The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin

Simon Pulley; Ian D L Foster; A Paula M Antunes


Journal of Soils and Sediments | 2015

The application of sediment fingerprinting to floodplain and lake sediment cores: assumptions and uncertainties evaluated through case studies in the Nene Basin, UK

Simon Pulley; Ian D L Foster; A Paula M Antunes


Journal of Soils and Sediments | 2015

Conservatism of mineral magnetic signatures in farm dam sediments in the South African Karoo: the potential effects of particle size and post-depositional diagenesis

Simon Pulley; Kate Rowntree; Ian D L Foster


Journal of Environmental Management | 2016

The use of an ordinary colour scanner to fingerprint sediment sources in the South African Karoo.

Simon Pulley; Kate Rowntree


Journal of Soils and Sediments | 2015

Flood bench chronology and sediment source tracing in the upper Thina catchment, South Africa: the role of transformed landscape connectivity

Bennie van der Waal; Kate Rowntree; Simon Pulley

Collaboration


Dive into the Simon Pulley's collaboration.

Top Co-Authors

Avatar

Ian D L Foster

University of Northampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge