Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon R. Dicker is active.

Publication


Featured researches published by Simon R. Dicker.


The Astrophysical Journal | 2009

BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND

Gaelen Marsden; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Philip Daniel Mauskopf; B. Magnelli; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg2, deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 μm sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 ± 0.59, 4.93 ± 0.34, and 2.27 ± 0.20 nW m–2 sr–1 at 250, 350, and 500 μm, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 μm-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z ≥ 1.2 increases with wavelength, with 60% from high-redshift sources at 500 μm. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 μm-faint sources than that for 24 μm-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 μm, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 μm-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.


The Astrophysical Journal | 2011

The Atacama Cosmology Telescope: a measurement of the cosmic microwave background power spectrum at 148 and 218 GHz from the 2008 southern survey

Sudeep Das; Tobias A. Marriage; Peter A. R. Ade; Paula Aguirre; M. Amiri; J. W. Appel; L. Felipe Barrientos; E. S. Battistelli; John R. Bond; Ben Brown; B. Burger; J. A. Chervenak; Mark J. Devlin; Simon R. Dicker; W. Bertrand Doriese; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; C. Hernández-Monteagudo; G. C. Hilton; Matt Hilton; Adam D. Hincks; Renée Hlozek; K. M. Huffenberger; David H. Hughes

We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ΛCDM cosmological model. At l>3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8σ level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.


Astrophysical Journal Supplement Series | 2011

Overview of the Atacama Cosmology Telescope: receiver, instrumentation, and telescope systems

Daniel S. Swetz; Peter A. R. Ade; M. Amiri; J. W. Appel; E. S. Battistelli; B. Burger; J. A. Chervenak; Mark J. Devlin; Simon R. Dicker; W. B. Doriese; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; J. W. Fowler; M. Halpern; Matthew Hasselfield; G. C. Hilton; Adam D. Hincks; K. D. Irwin; N. Jarosik; M. Kaul; J. Klein; Judy M. Lau; M. Limon; Tobias A. Marriage; Danica Marsden; Krista Martocci; Philip Daniel Mauskopf; Harvey Moseley; C. B. Netterfield

The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel’dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 meters. A six-meter off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148GHz, 218GHz, and 277GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22 × 26. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance. Subject headings: Microwave Telescopes, CMB Observations


Applied Optics | 2007

Optical design of the Atacama Cosmology Telescope and the Millimeter Bolometric Array Camera

Joseph W. Fowler; Michael D. Niemack; Simon R. Dicker; A. M. Aboobaker; Peter A. R. Ade; E. S. Battistelli; Mark Joseph Devlin; R. P. Fisher; M. Halpern; Peter Charles Hargrave; Adam D. Hincks; M. Kaul; J. Klein; Judy M. Lau; M. Limon; Tobias A. Marriage; Philip Daniel Mauskopf; Lyman A. Page; Suzanne T. Staggs; Daniel S. Swetz; Eric R. Switzer; Robert Thornton; Carole Tucker

The Atacama Cosmology Telescope is a 6 m telescope designed to map the cosmic microwave background simultaneously at 145, 215, and 280 GHz with arcminute resolution. Each frequency will have a 32 by 32 element focal plane array of transition edge sensor bolometers. The telescope and the cold reimaging optics are optimized for millimeter-wave observations with these sensitive detectors. The design of each is described.


Monthly Notices of the Royal Astronomical Society | 2005

The SCUBA half-degree extragalactic survey - I. Survey motivation, design and data processing

A. M. J. Mortier; S. Serjeant; James Dunlop; S. E. Scott; Peter A. R. Ade; D. M. Alexander; Omar Almaini; Itziar Aretxaga; Carlton M. Baugh; Andrew J. Benson; Philip Best; A. W. Blain; J. J. Bock; Colin Borys; A. Bressan; C. L. Carilli; E. L. Chapin; S. C. Chapman; D. L. Clements; K. Coppin; M. Crawford; Mark J. Devlin; Simon R. Dicker; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; D. Farrah; M. Fox; Carlos S. Frenk; E. Gaztanaga

he Submillimetre Common-User Bolometer Array (SCUBA) Half-Degree Extragalactic Survey (SHADES) is a major new blank-field extragalactic submillimetre (submm) survey currently underway at the James Clerk Maxwell Telescope (JCMT). Ultimately, SHADES aims to cover half a square degree at 450 and 850m to a 4 depth of ~= 8mJy at 850m. Two fields are being observed, the Subaru/XMM-Newton Deep Field (SXDF) (02h18m- 05) and the Lockman Hole East (10h52m+ 57). The survey has three main aims: (i) to investigate the population of high-redshift submm galaxies and the cosmic history of massive dust-enshrouded star formation activity; (ii) to investigate the clustering properties of submm-selected galaxies in order to determine whether these objects could be progenitors of present-day massive ellipticals; and (iii) to investigate the fraction of submm-selected sources that harbour active galactic nuclei. To achieve these aims requires that the submm data be combined with co-spatial information spanning the radio-to-X-ray frequency range. Accordingly, SHADES has been designed to benefit from ultra-deep radio imaging obtained with the Very Large Array (VLA), deep mid-infrared observations from the Spitzer Space Telescope, submm mapping by the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), deep near-infrared imaging with the United Kingdom Infrared Telescope, deep optical imaging with the Subaru Telescope and deep X-ray observations with the XMM-Newton observatory. It is expected that the resulting extensive multiwavelength data set will provide complete photometric redshift information accurate to as well as detailed spectral energy distributions for the vast majority of the submm-selected sources. In this paper, the first of a series on SHADES, we present an overview of the motivation for the survey, describe the SHADES survey strategy, provide a detailed description of the primary data-analysis pipeline and demonstrate the superiority of our adopted matched-filter source-extraction technique over, for example, Emerson-II style methods. We also report on the progress of the survey. As of 2004 February, 720arcmin2 had been mapped with SCUBA (about 40 per cent of the anticipated final total area) to a median 1 depth of 2.2mJy per beam at 850m (25mJy per beam at 450m), and the source-extraction routines give a source density of 650 +/- 50 sources deg-2 > 3 at 850m. Although uncorrected for Eddington bias, this source density is more than sufficient for providing enough sources to answer the science goals of SHADES, once half a square degree is observed. A refined reanalysis of the original 8-mJy survey Lockman hole data was carried out in order to evaluate the new data-reduction pipeline. Of the 17 most secure sources in the original sample, 12 have been reconfirmed, including 10 of the 11 for which radio identifications were previously secured.


The Astrophysical Journal | 2012

Evidence for environmental changes in the submillimeter dust opacity

Peter G. Martin; A. Roy; Sylvain Bontemps; M.-A. Miville-Deschênes; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Philip Daniel Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald V. Wiebe

The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 μm and one IRAS band at 100 μm. The proxy is the near-infrared color excess, E(J – K s), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity σe(1200) at 1200 GHz or 250 μm can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N H > 1022 cm–2) and small enough to ensure a uniform dust temperature. We find σe(1200) is typically (2-4) × 10–25 cm2 H–1 and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing σe(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted.


The Astrophysical Journal | 2008

SANEPIC: a mapmaking method for time stream data from large arrays

G. Patanchon; Peter A. R. Ade; J. J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; J. O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; J. Klein; Gaelen Marsden; P. G. Martin; Philip Daniel Mauskopf; C. B. Netterfield; Luca Olmi; Enzo Pascale; Marie Rex; D. Scott; Christopher Semisch; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

We describe a mapmaking method that we have developed for the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our method uses a maximum likelihood-based approach, with several approximations, which allows images to be constructed using large amounts of data with fairly modest computer memory and processing requirements. This new approach, Signal and Noise Estimation Procedure Including Correlations (SANEPIC), builds on several previous methods but focuses specifically on the regime where there are a large number of detectors sampling the same map of the sky, and explicitly allowing for the possibility of strong correlations between the detector time streams. We provide real and simulated examples of how well this method performs compared with more simplistic mapmakers based on filtering. We discuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance matrix is computed, and an iterative approach, which is much more efficient for large maps. SANEPIC has been successfully used to produce maps using data from the 2005 BLAST flight.


The Astrophysical Journal | 2011

The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

Tobias A. Marriage; Jean Baptiste Juin; Yen-Ting Lin; Danica Marsden; Michael R. Nolta; Bruce Partridge; Peter A. R. Ade; Paula Aguirre; M. Amiri; J. W. Appel; L. Felipe Barrientos; E. S. Battistelli; John R. Bond; Ben Brown; B. Burger; J. A. Chervenak; Sudeep Das; Mark J. Devlin; Simon R. Dicker; W. Bertrand Doriese; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; C. Hernández-Monteagudo; G. C. Hilton

We report on extragalactic sources detected in a 455 deg2 map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope (ACT) 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low-redshift X-ray-selected galaxy clusters. Estimates of the radio to millimeter-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α5-20 = –0.07 ± 0.06, α20-148 = –0.39 ± 0.04, and α5-148 = –0.20 ± 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C Sync = (2.8 ± 0.3) × 10–6μK2.


Journal of Cosmology and Astroparticle Physics | 2017

The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

Thibaut Louis; Emily Grace; Matthew Hasselfield; Marius Lungu; Loïc Maurin; Graeme E. Addison; Peter A. R. Ade; Simone Aiola; Rupert Allison; M. Amiri; Elio Angile; Nicholas Battaglia; James A. Beall; Francesco De Bernardis; J. Richard Bond; Joe Britton; Erminia Calabrese; H. M. Cho; Steve K. Choi; Kevin Coughlin; Devin Crichton; Kevin T. Crowley; Rahul Datta; Mark J. Devlin; Simon R. Dicker; Joanna Dunkley; Rolando Dünner; Simone Ferraro; Anna E. Fox; Patricio A. Gallardo

Author(s): Louis, T; Grace, E; Hasselfield, M; Lungu, M; Maurin, L; Addison, GE; Ade, PAR; Aiola, S; Allison, R; Amiri, M; Angile, E; Battaglia, N; Beall, JA; De Bernardis, F; Bond, JR; Britton, J; Calabrese, E; Cho, HM; Choi, SK; Coughlin, K; Crichton, D; Crowley, K; Datta, R; Devlin, MJ; Dicker, SR; Dunkley, J; Dunner, R; Ferraro, S; Fox, AE; Gallardo, P; Gralla, M; Halpern, M; Henderson, S; Hill, JC; Hilton, GC; Hilton, M; Hincks, AD; Hlozek, R; Patty Ho, SP; Huang, Z; Hubmayr, J; Huffenberger, KM; Hughes, JP; Infante, L; Irwin, K; Kasanda, SM; Klein, J; Koopman, B; Kosowsky, A; Li, D; Madhavacheril, M; Marriage, TA; McMahon, J; Menanteau, F; Moodley, K; Munson, C; Naess, S; Nati, F; Newburgh, L; Nibarger, J; Niemack, MD; Nolta, MR; Nunez, C; Page, LA; Pappas, C; Partridge, B; Rojas, F; Schaan, E; Schmitt, BL; Sehgal, N; Sherwin, BD; Sievers, J; Simon, S; Spergel, DN; Staggs, ST; Switzer, ER; Thornton, R; Trac, H; Treu, J; Tucker, C; Engelen, AV; Ward, JT; Wollack, EJ | Abstract:


The Astrophysical Journal | 2008

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

Matthew D. P. Truch; Peter A. R. Ade; J. J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; J. O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; J. Klein; G. Marsden; P. G. Martin; Philip Daniel Mauskopf; C. B. Netterfield; L. Olmi; Enzo Pascale; G. Patanchon; Marie Rex; D. Scott; Christopher Semisch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100 hr flight from northern Sweden in 2005 June (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 μm BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instruments.

Collaboration


Dive into the Simon R. Dicker's collaboration.

Top Co-Authors

Avatar

Mark J. Devlin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

M. Halpern

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolando Dünner

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

G. C. Hilton

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

B. S. Mason

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

Matthew Hasselfield

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J. Klein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David H. Hughes

Air Force Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge