Simon R. Goodyear
University of Aberdeen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon R. Goodyear.
Bone | 2009
Simon R. Goodyear; Iain Ronald Gibson; Janet M. S. Skakle; Richard P. K. Wells; Richard M. Aspden
Cortical and trabecular bone are both produced and maintained by the same cell types. At the microscopic scale they have a similar lamellar structure but at a macroscopic scale they are very different. Raman microscopy has been used to investigate compositional differences in the two bone types using bone from standard laboratory mice in physiological conditions. Clear differences were observed when complete spectra were compared by principal component analysis (PCA). Analysis of individual bands showed cortical bone to have compositional characteristics of older bone when compared with trabecular material, possibly due to the higher bone turnover traditionally reported in the trabecular compartment.
Molecular and Cellular Biology | 2009
Katy Schmidt; Catherine Hughes; J. A. Chudek; Simon R. Goodyear; Richard M. Aspden; Richard Talbot; Thomas E. Gundersen; Rune Blomhoff; Colin J. Henderson; C. Roland Wolf; Cheryll Tickle
ABSTRACT Cytochrome P450 oxidoreductase (POR) is the obligate electron donor for all microsomal cytochrome P450 enzymes, which catalyze the metabolism of a wide spectrum of xenobiotic and endobiotic compounds. Point mutations in POR have been found recently in patients with Antley-Bixler-like syndrome, which includes limb skeletal defects. In order to study P450 function during limb and skeletal development, we deleted POR specifically in mouse limb bud mesenchyme. Forelimbs and hind limbs in conditional knockout (CKO) mice were short with thin skeletal elements and fused joints. POR deletion occurred earlier in forelimbs than in hind limbs, leading additionally to soft tissue syndactyly and loss of wrist elements and phalanges due to changes in growth, cell death, and skeletal segmentation. Transcriptional analysis of E12.5 mouse forelimb buds demonstrated the expression of P450s involved in retinoic acid, cholesterol, and arachidonic acid metabolism. Biochemical analysis of CKO limbs confirmed retinoic acid excess. In CKO limbs, expression of genes throughout the whole cholesterol biosynthetic pathway was upregulated, and cholesterol deficiency can explain most aspects of the phenotype. Thus, cellular POR-dependent cholesterol synthesis is essential during limb and skeletal development. Modulation of P450 activity could contribute to susceptibility of the embryo and developing organs to teratogenesis.
Bone | 2010
Carmen Huesa; Manisha C. Yadav; Mikko Finnilä; Simon R. Goodyear; Simon P. Robins; K. Elizabeth Tanner; Richard M. Aspden; José Luis Millán; Colin Farquharson
Phosphatases are essential for the mineralization of the extracellular matrix within the skeleton. Their precise identities and functions however remain unclear. PHOSPHO1 is a phosphoethanolamine/phosphocholine phosphatase involved in the generation of inorganic phosphate for bone mineralization. It is highly expressed at sites of mineralization in bone and cartilage. The bones of Phospho1(-/-) mice are hypomineralized, bowed and present with spontaneous greenstick fractures at birth. In this study we show that PHOSPHO1 is essential for mechanically competent mineralization that is able to withstand habitual load. Long bones from Phospho1(-/-) mice did not fracture during 3-point bending but deformed plastically. With dynamic loading nanoindentation the elastic modulus and hardness of Phospho1(-/-) tibiae were significantly lower than wild-type tibia. Raman microscopy revealed significantly lower mineral:matrix ratios and lower carbonate substitutions in Phospho1(-/-) tibia. The altered dihydroxylysinonorleucine/hydroxylysinonorleucine and pyridinoline/deoxypyridinoline collagen crosslink ratios indicated possible changes in lysyl hydroxylase-1 activity and/or bone mineralization status. The bone formation and resorption markers, N-terminal propeptide and C-terminal telopeptide of Type I collagen, were both increased in Phospho1(-/-) mice and this we associated with increased bone remodeling during fracture repair or an attempt to remodel a mechanically competent bone capable of withstanding physiological load. In summary these data indicate that Phospho1(-/-) bones are hypomineralized and, consequently, are softer and more flexible. An inability to withstand physiological loading may explain the deformations noted. We hypothesize that this phenotype is due to the reduced availability of inorganic phosphate to form hydroxyapatite during mineralization, creating an undermineralized yet active bone.
Bone | 2013
Simon R. Goodyear; R.J. Barr; Eugene McCloskey; S. Alesci; Richard M. Aspden; David M. Reid; J.S. Gregory
PURPOSE There is a continuing need to improve the prediction of hip fractures to identify those at highest risk, enabling cost-effective use of preventative therapies. METHODS The aim of this work was to validate an innovative imaging biomarker for hip fracture by modelling the shape and texture of the proximal femur assessed from dual energy X-ray absorptiometry (DXA) scans. Scans used were acquired at baseline from elderly patients participating in a prospective, placebo-controlled fracture prevention study of the bisphosphonate, clodronate. 182 subjects who subsequently suffered a hip fracture were age, weight and height matched with two controls who did not suffer a fracture during a median 4-year follow-up period. Logistic regression was used to test if variables were good predictors of fracture and adjust for bone mineral density (BMD). RESULTS Shape mode 2, reflecting variability in neck-shaft angle, neck width and the size of both trochanters (0.81 (OR), 0.68-0.97 (CI), 0.024 (P)), and appearance mode 6, recording grey-level contrast (1.33, 1.11-1.59, 0.002), were significant predictors of hip fracture and remained so after adjustment for BMD (shape mode 2 (0.77, 0.64-0.93, 0.006), appearance mode 6 (1.32, 1.10-1.59, 0.003)). Receiver Operating Curve analysis showed the combination of shape mode 2, appearance mode 6 and BMD was 3% better than any single predictor. CONCLUSION Variables derived from shape and appearance models gave a prediction of fracture comparable to BMD and in combination with BMD gave an improvement in the prediction of hip fracture that could predict an additional 2000 hip fracture cases per year in the UK, potentially saving more than £20 million per year and 10,000 cases in the US.
Arthritis & Rheumatism | 2012
Amy Naylor; Eman Azzam; Stuart W. Smith; Adam P. Croft; Callum Poyser; Jeremy S. Duffield; David L. Huso; Caroline Ospelt; Mark S. Cooper; Clare M. Isacke; Simon R. Goodyear; Michael J. Rogers; Christopher D. Buckley
OBJECTIVE CD248 (tumor endothelial marker 1/endosialin) is found on stromal cells and is highly expressed during malignancy and inflammation. Studies have shown a reduction in inflammatory arthritis in CD248-knockout (CD248(-/-) ) mice. The aim of the present study was to investigate the functional effect of genetic deletion of CD248 on bone mass. METHODS Western blotting, polymerase chain reaction, and immunofluorescence were used to investigate the expression of CD248 in humans and mice. Micro-computed tomography and the 3-point bending test were used to measure bone parameters and mechanical properties of the tibiae of 10-week-old wild-type (WT) or CD248(-/-) mice. Human and mouse primary osteoblasts were cultured in medium containing 10 mM β-glycerophosphate and 50 μg/ml ascorbic acid to induce mineralization, and then treated with platelet-derived growth factor BB (PDGF-BB). The mineral apposition rate in vivo was calculated by identifying newly formed bone via calcein labeling. RESULTS Expression of CD248 was seen in human and mouse osteoblasts, but not osteoclasts. CD248(-/-) mouse tibiae had higher bone mass and superior mechanical properties (increased load required to cause fracture) compared to WT mice. Primary osteoblasts from CD248(-/-) mice induced increased mineralization in vitro and produced increased bone over 7 days in vivo. There was no decrease in bone mineralization and no increase in proliferation of osteoblasts in response to stimulation with PDGF-BB, which could be attributed to a defect in PDGF signal transduction in the CD248(-/-) mice. CONCLUSION There is an unmet clinical need to address rheumatoid arthritis-associated bone loss. Genetic deletion of CD248 in mice results in high bone mass due to increased osteoblast-mediated bone formation, suggesting that targeting CD248 in rheumatoid arthritis may have the effect of increasing bone mass in addition to the previously reported effect of reducing inflammation.
Journal of Orthopaedic Research | 2014
C. Merle; W. Waldstein; J.S. Gregory; Simon R. Goodyear; Richard M. Aspden; Peter R. Aldinger; David W. Murray; Harinderjit Gill
We assessed the variation in proximal femoral canal shape and its association with geometric and demographic parameters in primary hip OA. In a retrospective cohort study, the joint geometry of the proximal femur was evaluated on radiographs and corresponding CT scans of 345 consecutive patients with end‐stage hip OA. Active shape modeling (ASM) was performed to assess the variation in endosteal shape of the proximal femur. To identify natural groupings of patients, hierarchical cluster analysis of the shape modes was used. ASM identified 10 independent shape modes accounting for >96% of the variation in proximal femoral canal shape within the dataset. Cluster analysis revealed 10 specific shape clusters. Significant differences in geometric and demographic parameters between the clusters were observed. ASM and subsequent cluster analysis have the potential to identify specific morphological patterns of the proximal femur despite the variability in proximal femoral anatomy. The study identified patterns of proximal femoral canal shape in hip OA that allow a comprehensive classification of variation in shape and its association with joint geometry. Our data may improve future stem designs that will optimize stem fit and simultaneously allow individual restoration of hip biomechanics.
Methods of Molecular Biology | 2012
Simon R. Goodyear; Richard M. Aspden
The primary functions of bone are to do with support and protection - mechanical functions. The aim of this chapter is to set out some of the methods that can be used to measure these properties in cortical and cancelleous bone from large (e.g. human or bovine) and small (e.g. mouse) animals. The difference between properties of the sample (intrinsic properties) and properties of the material (extrinsic properties) is introduced and techniques for measuring them suggested. The addition of other tests to give a complete characterisation of a bone sample is presented.
Methods of Molecular Biology | 2012
Simon R. Goodyear; Richard M. Aspden
Raman microscopy is a non-destructive technique requiring minimal sample preparation that can be used to measure the chemical properties of the mineral and collagen parts of bone simultaneously. Modern Raman instruments contain the necessary components and software to acquire the standard information required in most bone studies. The spatial resolution of the technique is about a micron. As it is non-destructive and small samples can be used, it forms a useful part of a bone characterisation toolbox.
Medical Engineering & Physics | 2016
Aysha B. Khalid; Simon R. Goodyear; Ruth A. Ross; Richard M. Aspden
The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.
Hip International | 2013
Christian Merle; Wenzel Waldstein; J.S. Gregory; Simon R. Goodyear; Richard M. Aspden; Peter R. Aldinger; David W. Murray; Harinderjit Gill
The objectives of the present study were to determine (1) whether differences in the radiographic appearance of the of the proximal femoral canal exist on corresponding AP pelvis and AP hip radiographs, and (2) whether radiographic assessment of canal shape is accurate with reference to computed tomography (CT). In a retrospective study, corresponding radiographs and CT scans of 100 consecutive patients with primary hip OA were evaluated. Active shape modelling (ASM) was performed to assess the variation in proximal femoral canal shape and to identify differences between AP hip and AP pelvis views. Differences in the medial cortical flare between radiographs and CT were quantified using least squares curve fitting. ASM identified significant differences in the assessment of canal shape on corresponding AP hip and AP pelvis views. Curve fitting demonstrated a good agreement between AP hip radiographs and CT. Agreement between AP pelvis radiographs and CT was less good. In contrast to AP pelvis radiographs, AP hip radiographs allow a more accurate and reliable assessment of proximal femoral canal shape in the frontal plane in primary hip OA. Our findings may improve stem fit in total hip arthroplasty without the routine use of CT.