Simon S. Wing
McGill University Health Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon S. Wing.
The International Journal of Biochemistry & Cell Biology | 2003
Simon S. Wing
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.
Molecular and Cellular Biology | 2005
Zhiqian Liu; Rose Oughtred; Simon S. Wing
ABSTRACT During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone, which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone-dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domain-containing protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.
FEBS Letters | 2005
Matthew R. Warr; Stephane Acoca; Zhiqian Liu; Marc Germain; Mark A. Watson; Mathieu Blanchette; Simon S. Wing; Gordon C. Shore
A genome wide search for new BH3‐containing Bcl‐2 family members was conducted using position weight matrices (PWM) and identified a large (480 kDa), novel BH3‐only protein, originally called LASU1 (now also known as Ureb‐1, E3histone, ARF‐BP1, and Mule). We demonstrated that LASU1 is an E3 ligase that ubiquitinated Mcl‐1 in vitro and was required for its proteasome‐dependent degradation in HeLa cells. Of note, the BH3 domain of LASU1 interacted with Mcl‐1 but not with Bcl‐2 or Bcl‐Xl. A competing BH3‐ligand derived from Bim interacted with Mcl‐1 and prevented its interaction with LASU1 in HeLa cells, causing elevation of the steady‐state levels of Mcl‐1. This suggests that the unliganded form of Mcl‐1 is sensitive to LASU1‐mediated degradation of Mcl‐1.
The EMBO Journal | 2006
Madoka Yoshida; Kaori Yoshida; Guennadi Kozlov; Nadia S Lim; Gregory De Crescenzo; Zhiyu Pang; Juan Jose Berlanga; Avak Kahvejian; Kalle Gehring; Simon S. Wing; Nahum Sonenberg
The poly(A)‐binding protein (PABP) is a unique translation initiation factor in that it binds to the mRNA 3′ poly(A) tail and stimulates recruitment of the ribosome to the mRNA at the 5′ end. PABP activity is tightly controlled by the PABP‐interacting protein 2 (Paip2), which inhibits translation by displacing PABP from the mRNA. Here, we describe a close interplay between PABP and Paip2 protein levels in the cell. We demonstrate a mechanism for this co‐regulation that involves an E3 ubiquitin ligase, EDD, which targets Paip2 for degradation. PABP depletion by RNA interference (RNAi) causes co‐depletion of Paip2 protein without affecting Paip2 mRNA levels. Upon PABP knockdown, Paip2 interacts with EDD, which leads to Paip2 ubiquitination. Supporting a critical role for EDD in Paip2 degradation, knockdown of EDD expression by siRNA leads to an increase in Paip2 protein stability. Thus, we demonstrate that the turnover of Paip2 in the cell is mediated by EDD and is regulated by PABP. This mechanism serves as a homeostatic feedback to control the activity of PABP in cells.
Molecular and Cellular Biology | 2004
Sangwon Kim; Simon S. Wing; Prem Ponka
ABSTRACT Nitric oxide (NO) is an important signaling molecule that interacts with different targets depending on its redox state. NO can interact with thiol groups resulting in S-nitrosylation of proteins, but the functional implications of this modification are not yet fully understood. We have reported that treatment of RAW 264.7 cells with NO caused a decrease in levels of iron regulatory protein 2 (IRP2), which binds to iron-responsive elements present in untranslated regions of mRNAs for several proteins involved in iron metabolism. In this study, we show that NO causes S-nitrosylation of IRP2, both in vitro and in vivo, and this modification leads to IRP2 ubiquitination followed by its degradation in the proteasome. Moreover, mutation of one cysteine (C178S) prevents NO-mediated degradation of IRP2. Hence, S-nitrosylation is a novel signal for IRP2 degradation via the ubiquitin-proteasome pathway.
Molecular and Cellular Biology | 2000
Haijiang Lin; Anne Keriel; Carlos R. Morales; Nathalie Bedard; Qing Zhao; Pascal Hingamp; Stephanie Lefrançois; Lydie Combaret; Simon S. Wing
ABSTRACT Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action.
Molecular and Cellular Biology | 2009
Yu Lu; Olasunkanmi A. J. Adegoke; Alain Nepveu; Keiichi I. Nakayama; Nathalie Bedard; Dongmei Cheng; Junmin Peng; Simon S. Wing
ABSTRACT p27Kip1 is a cyclin-dependent kinase inhibitor that regulates the G1/S transition. Increased degradation of p27Kip1 is associated with cellular transformation. Previous work demonstrated that the ubiquitin ligases KPC1/KPC2 and SCFSkp2 ubiquitinate p27Kip1 in G1 and early S, respectively. The regulation of these ligases remains unclear. We report here that the USP19 deubiquitinating enzyme interacts with and stabilizes KPC1, thereby modulating p27Kip1 levels and cell proliferation. Cells depleted of USP19 by RNA interference exhibited an inhibition of cell proliferation, progressing more slowly from G0/G1 to S phase, and accumulated p27Kip1. This increase in p27Kip1 was associated with normal levels of Skp2 but reduced levels of KPC1. The overexpression of KPC1 or the use of p27−/− cells inhibited significantly the growth defect observed upon USP19 depletion. KPC1 was ubiquitinated in vivo and stabilized by proteasome inhibitors and by overexpression of USP19, and it also coimmunoprecipitated with USP19. Our results identify USP19 as the first deubiquitinating enzyme that regulates the stability of a cyclin-dependent kinase inhibitor and demonstrate that progression through G1 to S phase is, like the metaphase-anaphase transition, controlled in a hierarchical, multilayered fashion.
Journal of Biological Chemistry | 1998
Karen Meerovitch; Simon S. Wing; David Goltzman
Parathyroid hormone-related peptide (PTHrP) is an important causal factor for hypercalcemia associated with malignancy. In addition to the endocrine functions attributed to secretory forms of the peptide, PTHrP also plays a local role as a mediator of cellular growth and differentiation presumably at least in part through intracellular pathways. In studying the post-translational regulation of PTHrP, we observed that PTHrP was conjugated to multiple ubiquitin moieties. We report here that the proteasome is responsible for the degradation of the endoplasmic reticulum-associated precursor, pro-PTHrP. Cells expressing prepro-PTHrP and exposed to lactacystin accumulate pro-PTHrP assessed by anti-pro specific antibodies. Brefeldin A-treated cells also accumulate pro-PTHrP suggesting that degradation does not occur in the endoplasmic reticulum (ER) lumen. Subcellular fractionation of both lactacystin and brefeldin A-treated cells indicated that accumulated pro-PTHrP resides in microsomal fractions with a portion of the protein exposed to the cytosolic side of the ER membrane as assessed by protease protection experiments. Immunoprecipitation and Western blot analysis identified pro-PTHrP in association with the ER molecular chaperone protein BiP. We conclude that pro-PTHrP from the ER can gain access to the cytoplasmic side of the ER membrane where it can undergo ubiquitination and degradation by the proteasome.
Journal of Biological Chemistry | 2001
Haijiang Lin; Luming Yin; Jocelyn Reid; Keith D. Wilkinson; Simon S. Wing
Ubiquitin-specific processing proteases (UBPs) are characterized by a conserved core domain with surrounding divergent sequences, particularly at the N-terminal end. We previously cloned two isoforms of a testis UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini that target the two isoforms to different subcellular locations (Lin, H., Keriel, A., Morales, C. R., Bedard, N., Zhao, Q., Hingamp, P., Lefrancois, S., Combaret, L., and Wing, S. S. (2000) Mol. Cell. Biol. 20, 6568–6578). To determine whether the N termini also influence the biochemical functions of the UBP, we expressed UBP-t1, UBP-t2, and the common core domain, UBP core, in Escherichia coli. The three isoforms cleaved branched triubiquitin at >20-fold faster rates than linear diubiquitin, suggesting that UBP-testis functions as an isopeptidase. Both N-terminal extensions inhibited the ability of UBP-core to generate free ubiquitin when linked in a peptide bond with itself, another peptide, or to small adducts. The N-terminal extension of UBP-t2 increased the ability of UBP-core to cleave branched triubiquitin. UBP-core removed ubiquitin from testis ubiquitinated proteins more rapidly than UBP-t2 and UBP-t1. Thus, UBP enzymes appear to contain a catalytic core domain, the activities and specificities of which can be modulated by N-terminal extensions. These divergent N termini can alter localization and confer multiple functions to the various members of the large UBP family.
Molecular and Cellular Biology | 1996
Simon S. Wing; Nathalie Bedard; Carlos R. Morales; Pascal Hingamp; Jacquetta M. Trasler
The Saccharomyces cerevisiae ubiquitin-conjugating enzymes (E2s) UBC4 and UBC5 are essential for degradation of short-lived and abnormal proteins. We previously identified rat cDNAs encoding two E2s with strong sequence similarity to UBC4 and UBC5. These E2 isoforms are widely expressed in rat tissues, consistent with a fundamental cellular function for these E2s. We now report a new isoform, 8A, which despite having >91% amino acid identity with the other isoforms, shows several novel features. Expression of the 8A isoform appears restricted to the testis, is absent in early life, but is induced during puberty. Hypophysectomy reduced expression of the 8A isoform. In situ hybridization studies indicated that 8A mRNA is expressed mainly in round spermatids. Immunoblot analyses showed that 8A protein is found not only in subfractions of germ cells enriched in round spermatids but also in subfractions containing residual bodies extruded from more mature elongated spermatids, indicating that the protein possesses a longer half-life than the mRNA. Unlike all previously identified mammalian and plant homologs of S. cerevisiae UBC4, which possess a basic pI, the 8A isoform is unique in possessing an acidic pI. The small differences in sequence between the 8A isoform and other rat isoforms conferred differences in biochemical function. The 8A isoform was less effective than an isoform with a basic pI or ineffective in conjugating ubiquitin to certain fractions of testis proteins. Thus, although multiple isoforms of a specific E2 may exist to ensure performance of a critical cellular function, our data demonstrate, for the first time, that multiple genes also permit highly specialized regulation of expression of specific isoforms and that subtle differences in E2 primary structure can dictate conjugation of ubiquitin to different subsets of cellular proteins.