Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Trebst is active.

Publication


Featured researches published by Simon Trebst.


Journal of Statistical Mechanics: Theory and Experiment | 2007

The ALPS project release 2.0: open source software for strongly correlated systems

Bela Bauer; Lincoln D. Carr; Hans Gerd Evertz; Adrian E. Feiguin; Juliana Freire; Sebastian Fuchs; Lukas Gamper; Jan Gukelberger; Emanuel Gull; S Guertler; A Hehn; R Igarashi; Sergei V. Isakov; David Koop; Pn Ma; P Mates; Haruhiko Matsuo; Olivier Parcollet; G Pawłowski; Jd Picon; Lode Pollet; Emanuele Santos; V. W. Scarola; Ulrich Schollwöck; Cláudio T. Silva; Brigitte Surer; Synge Todo; Simon Trebst; Matthias Troyer; Michael L. Wall

We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/.


Journal of Chemical Physics | 2006

Optimized parallel tempering simulations of proteins

Simon Trebst; Matthias Troyer; Ulrich H. E. Hansmann

We apply a recently developed adaptive algorithm that systematically improves the efficiency of parallel tempering or replica exchange methods in the numerical simulation of small proteins. Feedback iterations allow us to identify an optimal set of temperatures/replicas which are found to concentrate at the bottlenecks of the simulations. A measure of convergence for the equilibration of the parallel tempering algorithm is discussed. We test our algorithm by simulating the 36-residue villin headpiece subdomain HP-36 where we find a lowest-energy configuration with a root-mean-square deviation of less than 4 A to the experimentally determined structure.


Physical Review Letters | 2012

Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3.

Yogesh Singh; Soham Manni; Johannes Reuther; Tom Berlijn; R. Thomale; W. Ku; Simon Trebst; P. Gegenwart

Combining thermodynamic measurements with theoretical calculations we demonstrate that the iridates A2IrO3 (A=Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S=1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from θ≈-125  K for Na2IrO3 to θ≈-33  K for Li2IrO3, while the ordering temperature remains roughly the same T(N)≈15  K. Using functional renormalization group calculations we show that this evolution of θ and T(N) as well as the low temperature zigzag magnetic order can be captured within this extended HK model. We estimate that Na2IrO3 is deep in a magnetically ordered regime, while Li2IrO3 appears to be close to a spin-liquid regime.


Physical Review E | 2004

Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations.

Simon Trebst; David A. Huse; Matthias Troyer

We present an adaptive algorithm which optimizes the statistical-mechanical ensemble in a generalized broad-histogram Monte Carlo simulation to maximize the systems rate of round trips in total energy. The scaling of the mean round-trip time from the ground state to the maximum entropy state for this local-update method is found to be O ( [N ln N](2) ) for both the ferromagnetic and the fully frustrated two-dimensional Ising model with N spins. Our algorithm thereby substantially outperforms flat-histogram methods such as the Wang-Landau algorithm.


Physical Review Letters | 2004

Performance Limitations of Flat-Histogram Methods

P. Dayal; Simon Trebst; Stefan Wessel; D. Würtz; Matthias Troyer; Sanjib Sabhapandit; S. N. Coppersmith

We determine the optimal scaling of local-update flat-histogram methods with system size by using a perfect flat-histogram scheme based upon the exact density of states of 2D Ising models. The typical tunneling time needed to sample the entire bandwidth does not scale with the number of spins N as the minimal N2 of an unbiased random walk in energy space. While the scaling is power law for the ferromagnetic and fully frustrated Ising model, for the +/-J nearest-neighbor spin glass the distribution of tunneling times is governed by a fat-tailed Fréchet extremal value distribution that obeys exponential scaling. Furthermore, the shape parameters of these distributions indicate that statistical sample means become ill defined already for moderate system sizes within these complex energy landscapes.


Nature Physics | 2007

Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets

Doron L. Bergman; Jason Alicea; Emanuel Gull; Simon Trebst; Leon Balents

Frustration refers to competition between different interactions that cannot be simultaneously satisfied—a familiar feature in many magnetic solids. Strong frustration leads to highly degenerate ground states and a large suppression of ordering by fluctuations. Key challenges in frustrated magnetism include the characterization of the fluctuating spin-liquid regime and determination of the mechanism of eventual order at lower temperature. Here, we study a model of a diamond-lattice antiferromagnet appropriate for numerous spinel materials. With sufficiently strong frustration, a massive ground-state degeneracy develops amongst spirals whose propagation wavevectors reside on a continuous two-dimensional ‘spiral surface’ in momentum space. We argue that an important ordering mechanism is entropic splitting of the degenerate ground states, an elusive phenomenon called ‘order by disorder’. A broad spiral spin-liquid regime emerges at higher temperatures, where the underlying spiral surface can be directly revealed through spin correlations. We discuss the agreement between these predictions and the well-characterized spinel MnSc2S4.


Journal of the Physical Society of Japan | 2005

The ALPS Project: Open Source Software for Strongly Correlated Systems

Fabien Alet; Simon Trebst; Stefan Wessel

We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org/.


Scientific Reports | 2017

Machine learning quantum phases of matter beyond the fermion sign problem

Peter Broecker; Juan Carrasquilla; Roger G. Melko; Simon Trebst

State-of-the-art machine learning techniques promise to become a powerful tool in statistical mechanics via their capacity to distinguish different phases of matter in an automated way. Here we demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion systems such that they correctly identify and locate quantum phase transitions in such systems. Using auxiliary-field quantum Monte Carlo (QMC) simulations to sample the many-fermion system, we show that the Green’s function holds sufficient information to allow for the distinction of different fermionic phases via a CNN. We demonstrate that this QMC + machine learning approach works even for systems exhibiting a severe fermion sign problem where conventional approaches to extract information from the Green’s function, e.g. in the form of equal-time correlation functions, fail.


Physical Review Letters | 2006

d-Wave resonating valence bond states of fermionic atoms in optical lattices.

Simon Trebst; Ulrich Schollwöck; Matthias Troyer; P. Zoller

We study controlled generation and measurement of superfluid d-wave resonating valence bond (RVB) states of fermionic atoms in 2D optical lattices. Starting from loading spatial and spin patterns of atoms in optical superlattices as pure quantum states from a Fermi gas, we adiabatically transform this state to an RVB state by a change of the lattice parameters. Results of exact time-dependent numerical studies for ladders systems are presented, suggesting generation of RVB states on a time scale smaller than typical experimental decoherence times.


Physical Review B | 2011

Finite-temperature phase diagram of the Heisenberg-Kitaev model

Johannes Reuther; Ronny Thomale; Simon Trebst

We discuss the finite-temperature phase diagram of the Heisenberg-Kitaev model on the hexagonal lattice, which has been suggested to describe the spin-orbital exchange of the effective spin-1/2 momenta in the Mott insulating Iridate Na2IrO3. At zero-temperature this model exhibits magnetically ordered states well beyond the isotropic Heisenberg limit as well as an extended gapless spin liquid phase around the highly anisotropic Kitaev limit. Using a pseudofermion functional renormalization group (RG) approach, we extract both the Curie-Weiss scale and the critical ordering scale (for the magnetically ordered states) from the RG flow of the magnetic susceptibility. The Curie-Weiss scale switches sign -- indicating a transition of the dominant exchange from antiferromagnetic to ferromagnetic -- deep in the magnetically ordered regime. For the latter we find no significant frustration, i.e. a substantial suppression of the ordering scale with regard to the Curie-Weiss scale. We discuss our results in light of recent experimental susceptibility measurements for Na2IrO3.

Collaboration


Dive into the Simon Trebst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Ludwig

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhenghan Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon Balents

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge