Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon W. Baxter is active.

Publication


Featured researches published by Simon W. Baxter.


Nature | 2012

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

Kanchon K. Dasmahapatra; James R. Walters; Adriana D. Briscoe; John W. Davey; Annabel Whibley; Nicola J. Nadeau; Aleksey V. Zimin; Daniel S.T. Hughes; Laura Ferguson; Simon H. Martin; Camilo Salazar; James J. Lewis; Sebastian Adler; Seung-Joon Ahn; Dean A. Baker; Simon W. Baxter; Nicola Chamberlain; Ritika Chauhan; Brian A. Counterman; Tamas Dalmay; Lawrence E. Gilbert; Karl H.J. Gordon; David G. Heckel; Heather M. Hines; Katharina Hoff; Peter W. H. Holland; Emmanuelle Jacquin-Joly; Francis M. Jiggins; Robert T. Jones; Durrell D. Kapan

The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.


Nature | 2011

Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry

Mathieu Joron; Lise Frézal; Robert T. Jones; Nicola Chamberlain; Siu Fai Lee; Christoph R. Haag; Annabel Whibley; Michel Becuwe; Simon W. Baxter; Laura Ferguson; Paul Wilkinson; Camilo Salazar; Claire Davidson; Richard Clark; Michael A. Quail; Helen Beasley; Rebecca Glithero; Christine Lloyd; Sarah Sims; Matthew C. Jones; Jane Rogers; Chris D. Jiggins; Richard H. ffrench-Constant

Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for ‘pin’ and ‘thrum’ floral types in Primula and Fagopyrum, but classic examples are also found in insect mimicry and snail morphology. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the P locus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow.


Nature Genetics | 2013

A heterozygous moth genome provides insights into herbivory and detoxification

Minsheng You; Zhen Yue; Weiyi He; Xinhua Yang; Guang Yang; Miao Xie; Dongliang Zhan; Simon W. Baxter; Liette Vasseur; Geoff M. Gurr; Carl J. Douglas; Jianlin Bai; Ping Wang; Kai Cui; Shiguo Huang; Xianchun Li; Qing Zhou; Zhangyan Wu; Qilin Chen; Chunhui Liu; Bo Wang; Xiaojing Li; Xiufeng Xu; Changxin Lu; Min Hu; John W. Davey; Sandy M. Smith; Ming-Shun Chen; Xiaofeng Xia; Weiqi Tang

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.


Philosophical Transactions of the Royal Society B | 2012

Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing

Nicola J. Nadeau; Annabel Whibley; Robert T. Jones; John W. Davey; Kanchon K. Dasmahapatra; Simon W. Baxter; Michael A. Quail; Mathieu Joron; Richard H. ffrench-Constant; Mark Blaxter; James Mallet; Chris D. Jiggins

Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These ‘islands’ of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the ‘speciation continuum’. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races.


PLOS ONE | 2011

Linkage Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-Model Organism

Simon W. Baxter; John W. Davey; J. Spencer Johnston; Anthony M. Shelton; David G. Heckel; Chris D. Jiggins; Mark Blaxter

Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.


PLOS Biology | 2006

A Conserved Supergene Locus Controls Colour Pattern Diversity in Heliconius Butterflies

Mathieu Joron; Riccardo Papa; Margarita Beltrán; Nicola Chamberlain; Jesús Mavárez; Simon W. Baxter; Moisés Abanto; Eldredge Bermingham; Sean Humphray; Jane Rogers; Helen Beasley; Karen Barlow; Richard H. ffrench-Constant; James Mallet; W. Owen McMillan; Chris D. Jiggins

We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a “supergene”, determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic “supergene” polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.


Genetics | 2011

Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera

Simon W. Baxter; Francisco Rubén Badenes-Pérez; Anna Morrison; Heiko Vogel; Neil Crickmore; Wendy Kain; Ping Wang; David G. Heckel; Chris D. Jiggins

Despite the prominent and worldwide use of Bacillus thuringiensis (Bt) insecticidal toxins in agriculture, knowledge of the mechanism by which they kill pests remains incomplete. Here we report genetic mapping of a membrane transporter (ABCC2) to a locus controlling Bt Cry1Ac toxin resistance in two lepidopterans, implying that this protein plays a critical role in Bt function.


Genetics | 2011

Parallel Evolution of Bt Toxin Resistance in Lepidoptera

Simon W. Baxter; Francisco Rubén Badenes-Pérez; Anna Morrison; Heiko Vogel; Neil Crickmore; Wendy Kain; Ping Wang; David G. Heckel; Chris D. Jiggins

Despite the prominent and worldwide use of Bacillus thuringiensis (Bt) insecticidal toxins in agriculture, knowledge of the mechanism by which they kill pests remains incomplete. Here we report genetic mapping of a membrane transporter (ABCC2) to a locus controlling Bt Cry1Ac toxin resistance in two lepidopterans, implying that this protein plays a critical role in Bt function.


Molecular Ecology | 2013

Genome‐wide patterns of divergence and gene flow across a butterfly radiation

Nicola J. Nadeau; Simon H. Martin; Krzysztof M. Kozak; Camilo Salazar; Kanchon K. Dasmahapatra; John W. Davey; Simon W. Baxter; Mark Blaxter; James Mallet; Chris D. Jiggins

The Heliconius butterflies are a diverse recent radiation comprising multiple levels of divergence with ongoing gene flow between species. The recently sequenced genome of Heliconius melpomene allowed us to investigate the genomic evolution of this group using dense RAD marker sequencing. Phylogenetic analysis of 54 individuals robustly supported reciprocal monophyly of H. melpomene and Heliconius cydno and refuted previous phylogenetic hypotheses that H. melpomene may be paraphylectic with respect to H. cydno. Heliconius timareta also formed a monophyletic clade closely related but distinct from H. cydno with Heliconius heurippa falling within this clade. We find evidence for genetic admixture between sympatric populations of the sister clades H. melpomene and H. cydno/timareta, particularly between H. cydno and H. melpomene from Central America and between H. timareta and H. melpomene from the eastern slopes of the Andes. Between races, divergence is primarily explained by isolation by distance and there is no detectable genetic population structure between parapatric races, suggesting that hybrid zones between races are not zones of secondary contact. Our results also support previous findings that colour pattern loci are shared between populations and species with similar colour pattern elements. Furthermore, this pattern is almost unique to these genomic regions, with only a very small number of other loci showing significant similarity between populations and species with similar colour patterns.


PLOS Genetics | 2010

Genomic Hotspots for Adaptation: The Population Genetics of Mullerian Mimicry in Heliconius erato

Brian A. Counterman; Félix Araujo-Pérez; Heather M. Hines; Simon W. Baxter; Clay Morrison; Daniel P. Lindstrom; Riccardo Papa; Laura Ferguson; Mathieu Joron; Richard H. ffrench-Constant; Chris Smith; Dahlia M. Nielsen; Rui Chen; Chris D. Jiggins; Robert D. Reed; Georg Halder; James Mallet; W. Owen McMillan

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as “supergenes.” Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.

Collaboration


Dive into the Simon W. Baxter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Joron

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge