Simon W.J. Gould
Kingston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon W.J. Gould.
BMC Complementary and Alternative Medicine | 2008
Erin M McCarrell; Simon W.J. Gould; Mark D. Fielder; Alison F. Kelly; Waffa El Sankary; Declan P. Naughton
BackgroundPunica granatum L. or pomegranates, have been reported to have antimicrobial activity against a range of Gram positive and negative bacteria. Pomegranate formulations containing ferrous salts have enhanced although short-term, antibacteriophage activities which are rapidly diminished owing to instability of the ferrous combination. The aim of this study was to determine the antimicrobial activities of combinations of pomegranate rind extracts (PRE) with a range of metals salts with the added stabiliser vitamin C.MethodsPRE solutions, prepared by blending rind sections with distilled water prior to sterilisation by autoclaving or filtration, were screened with a disc diffusion assay using penicillin G as a control. Suspension assays were used to determine the antimicrobial activities of PRE alone and in combination with salts of the following metals; Fe (II), Cu (II), Mn (II) or Zn (II), and vitamin C, against a panel of microbes following exposure for 30 mins. The test organisms included Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis.ResultsThe screening assay demonstrated that PRE exhibited activity against the Gram positive organisms at 24 h with no observable effect on any of the Gram negative bacteria. However, after 12 h, zones of inhibition were only observed for Ps. aeruginosa. In contrast, using the suspension assay, addition of Cu (II) salts to PRE solutions extended the activities resulting in no detectable growth being observed for the PRE/Cu (II) combination against E. coli, Ps. aeruginosa and P. mirabilis. Minimal antimicrobial activity was observed following incubation with Fe (II), Mn (II) or Zn (II) salts alone or in combination with PRE against any of the organisms in the test panel. The addition of vitamin C markedly enhanced the activities of both PRE/Fe (II) and PRE/Cu (II) combinations against S. aureus.ConclusionThis is the first report demonstrating the enhanced efficacy of PRE/metal salt combinations in the presence of the stabilising agent vitamin C, to which all isolates were sensitive with the exception of B. subtilis. This study has validated the exploration of PRE along with additives such as metal salts and vitamin C as novel antimicrobial combinations.
Annals of Microbiology | 2009
Simon W.J. Gould; Mark D. Fielder; Alison F. Kelly; Marina Morgan; Jackie Kenny; Declan P. Naughton
Hospital acquired infections (HAI) are a major problem worldwide and controlling the spread of these infections within a hospital is a constant challenge. Recent studies have highlighted the antimicrobial properties of copper and its alloys against a range of different bacteria. The objective of this study was to evaluate the antimicrobial properties of copper compared to stainless steel against a range of clinically important pathogens. These pathogens consisted of five isolates of each of the following organisms; meticillin resistantStaphylococcus aureus (MRSA),Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococci (VRE) and Panton-Valentine Leukocidin positive community acquired-MSSA (PVL positive CA-MSSA). MRSA,P. aeruginosa, E. coli, and CA-MSSA isolates were not detectable after a median time of 60 minutes. No detectable levels for all VRE isolates were determined after a median time of 40 minutes. However, for all isolates tested the stainless steel had no effect on the survival of the bacteria and levels remained similar to the time zero count. The results of this study demonstrate that copper has a strong antimicrobial effect against a range of clinically important pathogens compared to stainless steel and potentially could be employed to aid the control HAI.
Environmental Microbiology | 2010
P. Money; Alison F. Kelly; Simon W.J. Gould; James Denholm-Price; E. J. Threlfall; Mark D. Fielder
Entero-haemorrhagic Escherichia coli O157:H7 is a zoonotic pathogen, responsible for a relatively small number of food poisoning and illness outbreaks each year, when compared with other food-borne bacteria capable of causing infections in the population. Nevertheless, E. coli O157:H7 is a bacterial pathogen associated with severe human illnesses including bloody diarrhoea and haemolytic uremic syndrome occurring in both outbreak and sporadic settings. In England and Wales approximately 1% of all laboratory-confirmed cases of food poisoning are the result of E. coli O157:H7; however, in Scotland this figure increases to 3%. When the size of the population is taken into account and the rate of E. coli O157:H7 confirmed cases per 100,000 population is examined, the rate of E. coli 0157:H7 infections in Scotland is much greater than England and Wales. The routes of transmission have changed over time, with new routes of transmission such as farm visits emerging. The prevalence of E. coli O157:H7 has a seasonal dependency, with greater faecal shedding of the organism in the warmer months; this is directly mirrored in the increased reporting of E. coli O157:H7 infection among hospitalized patients. This review attempts to suggest why this phenomenon occurs, paying particular attention to weather, animal movement and private water supplies.
BMC Complementary and Alternative Medicine | 2009
Simon W.J. Gould; Mark D. Fielder; Alison F. Kelly; Declan P. Naughton
BackgroundRecently, natural products have been evaluated as sources of antimicrobial agents with efficacies against a variety of micro-organisms.MethodsThis report describes the antimicrobial activities of pomegranate rind extract (PRE) singularly and in combination with cupric sulphate against methicillin-sensitive and -resistant Staphylococcus aureus (MSSA, MRSA respectively), and Panton-Valentine Leukocidin positive community acquired MSSA (PVL positive CA-MSSA).ResultsPRE alone showed limited efficacy against MRSA and MSSA strains. Exposure to copper (II) ions alone for 2 hours resulted in moderate activity of between 102 to 103 log10 cfu mL-1 reduction in growth. This was enhanced by the addition of PRE to 104 log10 cfu mL-1 reduction in growth being observed in 80% of the isolates. However, the PVL positive CA-MSSA strains were more sensitive to copper (II) ions which exhibited moderate activities of between 103 log10 cfu mL-1 reduction in growth for 60% of the isolates.ConclusionPRE, in combination with Cu(II) ions, was seen to exhibit moderate antimicrobial effects against clinical isolates of MSSA, MRSA and PVL positive CA-MSSA isolates. The results of this study indicate that further investigation into the active ingredients of natural products, their mode of action and potential synergism with other antimicrobial agents is warranted. This is the first report of the efficacy of pomegranate against clinical PVL positive CA-MSSA isolates.
Annals of Clinical Microbiology and Antimicrobials | 2010
Simon W.J. Gould; Paul Cuschieri; Jessica Rollason; Anthony C. Hilton; Sue Easmon; Mark D. Fielder
BackgroundAntibiotic resistance is an increasing problem in isolates of Staphylococcus aureus (S. aureus) worldwide. In 2001 The National Health Service in the UK introduced a mandatory bacteraemia surveillance scheme for the reporting of S. aureus and methicillin-resistant S. aureus (MRSA). This surveillance initiative reports on the percentage of isolates that are methicillin resistant. However, resistance to other antibiotics is not currently reported and therefore the scale of emerging resistance is currently unclear in the UK. In this study, multiple antibiotic resistance (MAR) profiles against fourteen antimicrobial drugs were investigated for 705 isolates of S. aureus collected from two European study sites in the UK (London) and Malta.ResultsAll isolates were susceptible to linezolid, teicoplanin and vancomycin. Multiple antibiotic resistance profiles from both countries were determined, a total of forty-two and forty-five profiles were seen in the UK cohort (MRSA and MSSA respectively) and comparatively, sixty-two and fifty-two profiles were shown in the Maltese group. The largest MAR profile contained six antibiotics (penicillin G, methicillin, erythromycin, ciprofloxacin, clindamycin and clarithromycin) and was observed in the MRSA isolates in both the UK and Maltese cohorts.ConclusionThe data presented here suggests that the monitoring of changing resistance profiles locally in maintaining treatment efficacy to resistant pathogens.
British Journal of Biomedical Science | 2009
Simon W.J. Gould; Mark D. Fielder; Alison F. Kelly; W. El Sankary; Declan P. Naughton
Abstract Recently, natural products have been further evaluated as sources of antimicrobial agents with efficacies against a variety of microorganisms. This study reports the antimicrobial activities of pomegranate rind extract (PRE) in combination with Fe(II) and Cu(II) salts against extended-spectrum multidrug-resistant Pseudomonas aeruginosa. Antimicrobial suspension assays were carried out using aqueous extract of pomegranate alone or in combination with metals salts against P. aeruginosa. The extract:metal salt combination was also enhanced with the addition of vitamin C. Marked activities were observed for the aqueous PRE/Cu(II) preparations, which were greatly enhanced by the addition of the reductant vitamin C. In contrast, the aqueous PRE/Fe(II) preparations were inactive, regardless of addition of vitamin C. The combination of PRE and Cu(II) salts and vitamin C showed the greatest activity against clinical isolates of P. aeruginosa. These results warrant further investigation of PRE as a potential source of new antimicrobial agents.
Journal of Medical Microbiology | 2008
Simon W.J. Gould; Jessica Rollason; Anthony C. Hilton; Paul Cuschieri; Laura McAuliffe; Susan L. Easmon; Mark D. Fielder
Since 1999, the European Antimicrobial Resistance Surveillance System (EARSS) has monitored the rise in infection due to a number of organisms, including meticillin-resistant Staphylococcus aureus (MRSA). The EARSS reported that MRSA infections within intensive care units account for 25-50 % of infections in many central and southern European countries, these included France, Spain, Great Britain, Malta, Greece and Italy. Each country has defined epidemic MRSA (EMRSA) strains; however, the method of spread of these strains from one country to another is unknown. In this current study, DNA profiles of 473 isolates of MRSA collected from the UK and Malta were determined by PFGE. Analysis of the data showed that two countries separated by a large geographical distance had a similar DNA profile pattern. Additionally it was demonstrated that strains of EMRSA normally found in the UK were also found in the Maltese cohort (EMRSA 15 and 16). A distinct DNA profile was found in the Maltese cohort, which may be a local EMRSA, and accounted for 14.4 % of all Maltese isolates. The appearance of the same MRSA and EMRSA profiles in two separate countries suggests that MRSA can be transferred out of their country of origin and potentially establish in a new locality or country.
Fems Immunology and Medical Microbiology | 2008
David J. Stokes; Alison F. Kelly; Simon W.J. Gould; Claire Cassar; Mark D. Fielder
Antimicrobial resistance is a major concern in health care and farming settings throughout the world. The level of antimicrobial resistance continues to increase and the requirement for a novel and possibly dramatic change in therapy choices is required. One possible mechanism for overcoming resistance is the actual removal of antimicrobial treatment from the therapeutic armoury. This review examines the potential for success of a policy advocating the reduction of antimicrobial use and additionally the withdrawal of such treatments. Evidence from agriculture suggests that the removal of certain drugs from animal husbandry can result in concomitant falls in certain drug resistances in human patients.
BMC Complementary and Alternative Medicine | 2011
Andrew C. Holloway; Simon W.J. Gould; Mark D. Fielder; Declan P. Naughton; Alison F. Kelly
BackgroundEnhancement of antimicrobial plant products e.g. pomegranate extract by copper (II) sulphate is known. Such combinations have applications in various settings, including the identification of novel compositions to study, treat and control infection.MethodsA combination of white tea (WT) (made allowing 10 minutes infusion time at 100°C) was combined with 4.8 mM copper (II) sulphate and tested for antimicrobial effect on the viability of Staphylococcus aureus NCTC 06571. Comparisons were made with green (GT) and black (BT) teas. A WT sub-fraction (WTF < 1000 Da) was tested with copper (II) sulphate and 4.8 mM vitamin C. pH measurements of samples were taken for controls and to observe any changes due to tea/agent interaction. Catalase was used to investigate hydrogen peroxide release. UV-vis. was used to compare WT and WTF.ResultsA 30 minute incubation at room temperature of copper (II) sulphate alone and combined with WT reduced the viability of S. aureus NCTC 06571 by c.a 1 log10 cfu mL-1. GT and BT with copper (II) sulphate negated activity to buffer values. Combined with copper (II) sulphate, vitamin C, WTF and, vitamin C plus WTF all reduced the viability of S. aureus NCTC 06571 by c.a. 3.5 log10 cfu mL-1. Independent experiments showed the results were not due to pH effects. Adding WT or WTF to copper (II) sulphate resulted in increased acidity. Copper (II) sulphate alone and combined with WT required c.a 300 μg mL-1 (final concentration) catalase to restore S. aureus viability, WTF with copper (II) sulphate and added vitamin C required c.a 600 μg mL-1. WT and WTF UV-visible spectra were similar.ConclusionsWT showed no efficacy in the combinations tested. WTF was enhanced with copper (II) sulphate and further with vitamin C. WT and WTF increased acidity of copper (II) sulphate possibly via the formation of chemical complexes. The difference in WT/WTF absorbance possibly represented substances less concentrated or absent in WTF. Investigations to establish which WTF component/s and in what proportions additives are most effective against target organisms are warranted.
Fems Microbiology Letters | 2009
Simon W.J. Gould; Maureen V. Chadwick; Paul Cuschieri; Susan L. Easmon; Anthony C. Richardson; Robert G. Price; Mark D. Fielder
Eight novel chromogenic substrates were evaluated for their efficacy in detecting lipase activity in clinical isolates of Staphylococcus aureus from the United Kingdom and Malta. All isolates metabolized the chromogenic lipase substrates 5-(4-hydroxy-3,5-dimethoxyphenylmethylene)-2-thioxothia-zolidin-4-one-3-ethanoic acid (SRA)-propionate, SRA-butyrate, SRA-octanoate and 2-[2-(4-hydroxy-3,5-dimethoxyphenyl)-vinyl]-3-methy-benzothiazolium salt (SB(Z)TM)-acetate. Over 90% of the isolates metabolized the lipase substrates SRA-decanoate and SRA-laurate. However, only 0.6% of UK isolates and 2% of Maltese isolates metabolized the lipase substrate SRA-myristate; none of the isolates tested metabolized SB(Z)TM-butyrate. Traditional Tween 80 assays showed that over 73% of the UK methicillin-resistant Staphylococcus aureus (MRSA) isolates and 83% of the UK methicillin-sensitive Staphylococcus aureus (MSSA) isolates demonstrated lipolytic activity. In contrast, Maltese isolates showed lipase activity in 94% and 88% of the MRSA and MSSA strains, respectively. Lipases in MRSA and MSSA demonstrated substrate specificity whose activity appeared dependent upon hydrocarbon chain length of the chromogen. These novel chromogens can be used for lipase enzyme detection and have application for full characterization of numerous S. aureus lipases.