Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon X. Yang is active.

Publication


Featured researches published by Simon X. Yang.


systems man and cybernetics | 2004

A neural network approach to complete coverage path planning

Simon X. Yang; Chaomin Luo

Complete coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots, painter robots, land mine detectors, lawn mowers, automated harvesters, and window cleaners. In this paper, a novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxleys (1952) membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location. The proposed model algorithm is computationally simple. Simulation results show that the proposed model is capable of planning collision-free complete coverage robot paths.


Neural Networks | 2000

An efficient neural network approach to dynamic robot motion planning

Simon X. Yang; Max Q.-H. Meng

In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.


international conference on robotics and automation | 2004

A knowledge based genetic algorithm for path planning of a mobile robot

Yanrong Hu; Simon X. Yang

In this paper, a knowledge based genetic algorithm (GA) for path planning of a mobile robot is proposed, which uses problem-specific genetic algorithms for robot path planning instead of the standard GAs. The proposed knowledge based genetic algorithm incorporates the domain knowledge into its specialized operators, where some also combine a local search technique. The proposed genetic algorithm also features a unique and simple path representation and a simple but effective evaluation method. The knowledge based genetic algorithm is capable of finding an optimal or near-optimal robot path in both complex static and dynamic environments. The effectiveness and efficiency of the proposed genetic algorithm is demonstrated by simulation studies. The irreplaceable role of the specialized genetic operators in the proposed GA for solving robot path planning problem is demonstrated by a comparison study.


systems man and cybernetics | 2001

Neural network approaches to dynamic collision-free trajectory generation

Simon X. Yang; Max Q.-H. Meng

In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.


international conference on robotics and automation | 2003

Genetic algorithm based path planning for a mobile robot

Jianping Tu; Simon X. Yang

In this paper, a novel genetic algorithm based approach to path planning of a mobile robot is proposed. The major characteristic of the proposed algorithm is that the chromosome has a variable length. The location target and obstacles are included to find a path for a mobile robot in an environment that is a 2D workplace discretized into a grid net. Each cell in the net is a gene. The number of genes in one chromosome depends on the environment. The locations of the robot, the target and the obstacle are marked in the workplace. The proposed algorithm is capable of generating collision-free paths for a mobile robot in both static and dynamic environments. In a static environment, the generated robot path is optimal in the sense of the shortest distance. The effectiveness of the proposed model is demonstrated by simulation studies.


IEEE Transactions on Neural Networks | 2008

A Bioinspired Neural Network for Real-Time Concurrent Map Building and Complete Coverage Robot Navigation in Unknown Environments

Chaomin Luo; Simon X. Yang

Complete coverage navigation (CCN) requires a special type of robot path planning, where the robots should pass every part of the workspace. CCN is an essential issue for cleaning robots and many other robotic applications. When robots work in unknown environments, map building is required for the robots to effectively cover the complete workspace. Real-time concurrent map building and complete coverage robot navigation are desirable for efficient performance in many applications. In this paper, a novel neural-dynamics-based approach is proposed for real-time map building and CCN of autonomous mobile robots in a completely unknown environment. The proposed model is compared with a triangular-cell-map-based complete coverage path planning method (Oh et al., 2004) that combines distance transform path planning, wall-following algorithm, and template-based technique. The proposed method does not need any templates, even in unknown environments. A local map composed of square or rectangular cells is created through the neural dynamics during the CCN with limited sensory information. From the measured sensory information, a map of the robots immediate limited surroundings is dynamically built for the robot navigation. In addition, square and rectangular cell map representations are proposed for real-time map building and CCN. Comparison studies of the proposed approach with the triangular-cell-map-based complete coverage path planning approach show that the proposed method is capable of planning more reasonable and shorter collision-free complete coverage paths in unknown environments.


IEEE Transactions on Neural Networks | 2003

Real-time collision-free motion planning of a mobile robot using a Neural Dynamics-based approach

Simon X. Yang; Max Q.-H. Meng

A neural dynamics based approach is proposed for real-time motion planning with obstacle avoidance of a mobile robot in a nonstationary environment. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation or an additive equation. The real-time collision-free robot motion is planned through the dynamic neural activity landscape of the neural network without any learning procedures and without any local collision-checking procedures at each step of the robot movement. Therefore the model algorithm is computationally simple. There are only local connections among neurons. The computational complexity linearly depends on the neural network size. The stability of the proposed neural network system is proved by qualitative analysis and a Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.


systems man and cybernetics | 2006

An efficient dynamic system for real-time robot-path planning

Allan R. Willms; Simon X. Yang

This paper presents a simple yet efficient dynamic-programming (DP) shortest path algorithm for real-time collision-free robot-path planning applicable to situations in which targets and barriers are permitted to move. The algorithm works in real time and requires no prior knowledge of target or barrier movements. In the case that the barriers are stationary, this paper proves that this algorithm always results in the robot catching the target, provided it moves at a greater speed than the target, and the dynamic-system update frequency is sufficiently large. Like most robot-path-planning approaches, the environment is represented by a topologically organized map. Each grid point on the map has only local connections to its neighboring grid points from which it receives information in real time. The information stored at each point is a current estimate of the distance to the nearest target and the neighbor from which this distance was determined. Updating the distance estimate at each grid point is done using only the information gathered from the points neighbors, that is, each point can be considered an independent processor, and the order in which grid points are updated is not determined based on global knowledge of the current distances at each point or the previous history of each point. The robot path is determined in real time completely from the information at the robots current grid-point location. The computational effort to update each point is minimal, allowing for rapid propagation of the distance information outward along the grid from the target locations. In the static situation, where both the targets and the barriers do not move, this algorithm is a DP solution to the shortest path problem, but is restricted by lack of global knowledge. In this case, this paper proves that the dynamic system converges in a small number of iterations to a state where the minimal distance to a target is recorded at each grid point and shows that this robot-path-planning algorithm can be made to always choose an optimal path. The effectiveness of this algorithm is demonstrated through a number of simulations


IEEE Transactions on Industrial Electronics | 2012

A Bioinspired Neurodynamics-Based Approach to Tracking Control of Mobile Robots

Simon X. Yang; Anmin Zhu; Guangfeng Yuan; Max Q.-H. Meng

Tracking control is a fundamentally important issue for robot and motor systems, where smooth velocity commands are desirable for safe and effective operation. In this paper, a novel biologically inspired tracking control approach to real-time navigation of a nonholonomic mobile robot is proposed by integrating a backstepping technique and a neurodynamics model. The tracking control algorithm is derived from the error dynamics analysis of the mobile robot and the stability analysis of the closed-loop control system. The stability of the robot control system and the convergence of tracking errors to zeros are guaranteed by a Lyapunov stability theory. Unlike some existing tracking control methods for mobile robots whose control velocities suffer from velocity jumps, the proposed neurodynamics-based approach is capable of generating smooth continuous robot control signals with zero initial velocities. In addition, it can deal with situations with a very large tracking error. The effectiveness and efficiency of the proposed neurodynamics-based tracking control of mobile robots are demonstrated by experimental and comparison studies.


IEEE Transactions on Systems, Man, and Cybernetics | 2013

Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace

Daqi Zhu; Huan Huang; Simon X. Yang

For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.

Collaboration


Dive into the Simon X. Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daqi Zhu

Shanghai Maritime University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Li

University of Guelph

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuzhi Lai

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Wu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yi Chai

Chongqing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge