Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Berardi is active.

Publication


Featured researches published by Simona Berardi.


Clinical Cancer Research | 2009

Gene Expression Profiling of Bone Marrow Endothelial Cells in Patients with Multiple Myeloma

Roberto Ria; Simona Berardi; Addolorata Coluccia; Annunziata De Luisi; Michela Mattioli; Domenica Ronchetti; Fortunato Morabito; Attilio Guarini; Maria Teresa Petrucci; Franco Dammacco; Domenico Ribatti; Antonino Neri; Angelo Vacca

Purpose: To determine a “gene/molecular fingerprint” of multiple myeloma endothelial cells and identify vascular mechanisms governing the malignant progression from quiescent monoclonal gammopathy of undetermined significance. Experimental Design: Comparative gene expression profiling of multiple myeloma endothelial cells and monoclonal gammopathy of undetermined significance endothelial cells with the Affymetrix U133A Arrays was carried out in patients at diagnosis; expression and function of selective vascular markers was validated by real-time reverse transcriptase-PCR, Western blot, and small interfering RNA analyses. Results: Twenty-two genes were found differentially expressed (14 down-regulated and eight up-regulated) at relatively high stringency in multiple myeloma endothelial cells compared with monoclonal gammopathy of undetermined significance endothelial cells. Functional annotation revealed a role of these genes in the regulation of extracellular matrix formation and bone remodeling, cell adhesion, chemotaxis, angiogenesis, resistance to apoptosis, and cell-cycle regulation. Validation was focused on six genes (DIRAS3, SERPINF1, SRPX, BNIP3, IER3, and SEPW1) not previously found to be functionally correlated to the overangiogenic phenotype of multiple myeloma endothelial cells in active disease. The small interfering RNA knockdown of BNIP3, IER3, and SEPW1 genes affected critical multiple myeloma endothelial cell functions correlated with the overangiogenic phenotype. Conclusions: The distinct endothelial cell gene expression profiles and vascular phenotypes detected in this study may influence remodeling of the bone marrow microenvironment in patients with active multiple myeloma. A better understanding of the linkage between plasma cells and endothelial cells in multiple myeloma could contribute to the molecular classification of the disease and thus pinpoint selective gene targets for more effective antiangiogenic treatments. (Clin Cancer Res 2009;15(17):5369–78)


Clinical Cancer Research | 2011

Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma

Annunziata De Luisi; Arianna Ferrucci; Addolorata Coluccia; Roberto Ria; Michele Moschetta; Emanuela de Luca; Luisa Pieroni; Michele Maffia; Andrea Urbani; Giulia Di Pietro; Attilio Guarini; Girolamo Ranieri; Paolo Ditonno; Simona Berardi; Antonella Caivano; Antonio Basile; Nicola Cascavilla; Silvana Capalbo; Giovanni Quarta; Franco Dammacco; Domenico Ribatti; Angelo Vacca

Purpose: To determine the in vivo and in vitro antiangiogenic power of lenalidomide, a “lead compound” of IMiD immunomodulatory drugs in bone marrow (BM) endothelial cells (EC) of patients with multiple myeloma (MM) in active phase (MMEC). Experimental Design: The antiangiogenic effect in vivo was studied using the chorioallantoic membrane (CAM) assay. Functional studies in vitro (angiogenesis, “wound” healing and chemotaxis, cell viability, adhesion, and apoptosis) were conducted in both primary MMECs and ECs of patients with monoclonal gammopathies (MGUS) of undetermined significance (MGEC) or healthy human umbilical vein endothelial cells (HUVEC). Real-time reverse transcriptase PCR, Western blotting, and differential proteomic analysis were used to correlate morphologic and biological EC features with the lenalidomide effects at the gene and protein levels. Results: Lenalidomide exerted a relevant antiangiogenic effect in vivo at 1.75 μmol/L, a dose reached in interstitial fluids of patients treated with 25 mg/d. In vitro, lenalidomide inhibited angiogenesis and migration of MMECs, but not of MGECs or control HUVECs, and had no effect on MMEC viability, apoptosis, or fibronectin- and vitronectin-mediated adhesion. Lenalidomide-treated MMECs showed changes in VEGF/VEGFR2 signaling pathway and several proteins controlling EC motility, cytoskeleton remodeling, and energy metabolism pathways. Conclusions: This study provides information on the molecular mechanisms associated with the antimigratory and antiangiogenic effects of lenalidomide in primary MMECs, thus giving new avenues for effective endothelium-targeted therapies in MM. Clin Cancer Res; 17(7); 1935–46. ©2011 AACR.


Leukemia | 2014

Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies

Maria Antonia Frassanito; Luigia Rao; Michele Moschetta; Roberto Ria; L. Di Marzo; A De Luisi; Vito Racanelli; Ivana Catacchio; Simona Berardi; Antonio Basile; Eline Menu; Simona Ruggieri; Beatrice Nico; Domenico Ribatti; Ruggiero Fumarulo; Franco Dammacco; Karin Vanderkerken; Angelo Vacca

The role of cancer-associated fibroblasts (CAFs) has not been previously studied in multiple myeloma (MM). Here, cytofluorimetric analysis revealed higher proportions of bone marrow (BM) CAFs in patients with active MM (both at diagnosis and relapse) compared with patients in remission or those with monoclonal gammopathy of undetermined significance or deficiency anemia (controls). CAFs from MM patients produced increased levels of transforming growth factor-β, interleukin-6, stromal cell-derived factor-1α, insulin-like growth factor-1, vascular endothelial growth factor and fibroblast growth factor-2 and displayed an activated and heterogeneous phenotype, which supported their origin from resident fibroblasts, endothelial cells and hematopoietic stem and progenitor cells via the endothelial–mesenchymal transition as well as mesenchymal stem cells via the mesenchymal transition, as both of these processes are induced by MM cells and CAFs. Active MM CAFs fostered chemotaxis, adhesion, proliferation and apoptosis resistance in MM cells through cytokine signals and cell-to-cell contact, which were inhibited by blocking CXCR4, several integrins and fibronectin. MM cells also induced the CAFs proliferation. In syngeneic 5T33MM and xenograft mouse models, MM cells induced the expansion of CAFs, which, in turn, promoted MM initiation and progression as well as angiogenesis. In BM biopsies from patients and mice, nests of CAFs were found in close contact with MM cells, suggesting a supportive niche. Therefore, the targeting of CAFs in MM patients may be envisaged as a novel therapeutic strategy.


Stem Cells International | 2013

Evidence for Bone Marrow Adult Stem Cell Plasticity: Properties, Molecular Mechanisms, Negative Aspects, and Clinical Applications of Hematopoietic and Mesenchymal Stem Cells Transdifferentiation

Ivana Catacchio; Simona Berardi; Antonia Reale; Annunziata De Luisi; Vito Racanelli; Angelo Vacca; Roberto Ria

In contrast to the pluripotent embryonic stem cells (ESCs) which are able to give rise to all cell types of the body, mammalian adult stem cells (ASCs) appeared to be more limited in their differentiation potential and to be committed to their tissue of origin. Recently, surprising new findings have contradicted central dogmas of commitment of ASCs by showing their plasticity to differentiate across tissue lineage boundaries, irrespective of classical germ layer designations. The present paper supports the plasticity of the bone marrow stem cells (BMSCs), bringing the most striking and the latest evidences of the transdifferentiation properties of the bone marrow hematopoietic and mesenchymal stem cells (BMHSCs, and BMMSCs), the two BM populations of ASCs better characterized. In addition, we report the possible mechanisms that may explain these events, outlining the clinical importance of these phenomena and the relative problems.


Oncogene | 2012

Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets

Simona Berardi; Antonella Caivano; Roberto Ria; Beatrice Nico; R Savino; R Terracciano; G De Tullio; Arianna Ferrucci; A De Luisi; Michele Moschetta; G. Mangialardi; Ivana Catacchio; Antonio Basile; Attilio Guarini; Alfredo Zito; Pasquale Ditonno; P Musto; Franco Dammacco; Domenico Ribatti; Angelo Vacca

Bone marrow (BM) angiogenesis has an important role in the initiation and progression of multiple myeloma (MM). We looked at novel mechanisms of vessel formation in patients with MM through a comparative proteomic analysis between BM endothelial cells (ECs) of patients with active MM (MMECs) and ECs of patients with monoclonal gammopathy of undetermined significance (MGECs) and of subjects with benign anemia (normal ECs). Four proteins were found overexpressed in MMECs: filamin A, vimentin, α-crystallin B and 14-3-3ζ/δ protein, not yet linked to overangiogenic phenotype. These proteins gave a typical distribution in the BM of MM patients and in MMECs versus MGECs, plausibly according to a different functional state. Their expression was enhanced by vascular endothelial growth factor, fibroblast growth factor 2, hepatocyte growth factor and MM plasma cell conditioned medium in step with enhancement of MMEC angiogenesis. Their silencing RNA knockdown affected critical MMEC angiogenesis-related functions, such as spreading, migration and tubular morphogenesis. A gradual stabilization of 14-3-3ζ/δ protein was observed, with transition from normal ECs to MGECs and MMECs that may be a critical step for the angiogenic switch in MMECs and maintenance of the cell overangiogenic phenotype. These proteins were substantially impacted by anti-MM drugs, such as bortezomib, lenalidomide and panobinostat. Results suggest that these four proteins could be new targets for the antiangiogenic management of MM patients.


Clinical Cancer Research | 2014

HIF-1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target

Roberto Ria; Ivana Catacchio; Simona Berardi; Annunziata De Luisi; Antonella Caivano; Claudia Piccoli; Vitalba Ruggieri; Maria Antonia Frassanito; Domenico Ribatti; Beatrice Nico; Tiziana Annese; Simona Ruggieri; Attilio Guarini; Carla Minoia; Paolo Ditonno; Emanuele Angelucci; Daniele Derudas; Michele Moschetta; Franco Dammacco; Angelo Vacca

Purpose: To investigate the role of hypoxia-inducible factor-1α (HIF-1α) in angiogenesis and drug resistance of bone marrow endothelial cells of patients with multiple myeloma. Experimental Design: HIF-1α mRNA and protein were evaluated in patients with multiple myeloma endothelial cells (MMEC) at diagnosis, at relapse after bortezomib- or lenalidomide-based therapies or on refractory phase to these drugs, at remission; in endothelial cells of patients with monoclonal gammapathies of undetermined significance (MGUS; MGECs), and of those with benign anemia (controls). The effects of HIF-1α inhibition by siRNA or panobinostat (an indirect HIF-1α inhibitor) on the expression of HIF-1α proangiogenic targets, on MMEC angiogenic activities in vitro and in vivo, and on overcoming MMEC resistance to bortezomib and lenalidomide were studied. The overall survival of the patients was also observed. Results: Compared with the other endothelial cell types, only MMECs from 45% of relapsed/refractory patients showed a normoxic HIF-1α protein stabilization and activation that were induced by reactive oxygen species (ROS). The HIF-1α protein correlated with the expression of its proangiogenic targets. The HIF-1α inhibition by either siRNA or panobinostat impaired the MMECs angiogenesis–related functions both in vitro and in vivo and restored MMEC sensitivity to bortezomib and lenalidomide. Patients with MMECs expressing the HIF-1α protein had shorter overall survival. Conclusions: The HIF-1α protein in MMECs may induce angiogenesis and resistance to bortezomib and lenalidomide and may be a plausible target for the antiangiogenic management of patients with well-defined relapsed/refractory multiple myeloma. It may also have prognostic significance. Clin Cancer Res; 20(4); 847–58. ©2013 AACR.


Journal of Oncology | 2013

Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

Simona Berardi; Roberto Ria; Antonia Reale; Annunziata De Luisi; Ivana Catacchio; Michele Moschetta; Angelo Vacca

Tumor microenvironment is essential for multiple myeloma (MM) growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM) microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.


Blood | 2015

Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing

Patrizia Leone; Simona Berardi; Maria Antonia Frassanito; Roberto Ria; Valli De Re; Sebastiano Cicco; Stefano Battaglia; Paolo Ditonno; Franco Dammacco; Angelo Vacca; Vito Racanelli

Many researchers have speculated that the clinical progression from monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) is driven by defects in dendritic cell (DC) function. However, evidence supporting this assumption is controversial, and no mechanism for the putative DC dysfunction has been demonstrated thus far. We studied DC subsets from the bone marrow of MM patients compared with those of MGUS patients and control subjects. We found that myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) accumulate in the bone marrow during the MGUS-to-MM progression. After engulfment of apoptotic tumor plasma cells via CD91, bone marrow mDCs and pDCs mature and are able to activate tumor-specific CD8(+) T cells. However, by interacting directly with CD28 on live (nonapoptotic) tumor plasma cells, bone marrow mDCs downregulate the expression of proteasome subunits in these cells, thus enabling their evasion from human leukocyte antigen (HLA) class I-restricted CD8(+) T-cell killing. These results suggest that DCs play a dual, but opposing, role in MM: for one, DCs activate CD8(+) T cells against tumor plasma cells and, for the other, DCs protect tumor plasma cells from CD8(+) T-cell killing. This information should be taken into account in designing immunotherapy approaches to enhance immune surveillance in MGUS and to break down immune tolerance in MM.


The Journal of Pathology | 2013

Pentraxin 3 (PTX3) inhibits plasma cell/stromal cell cross‐talk in the bone marrow of multiple myeloma patients

Antonio Basile; Michele Moschetta; Paolo Ditonno; Roberto Ria; Ilaria Marech; Annunziata De Luisi; Simona Berardi; Maria Antonia Frassanito; Emanuele Angelucci; Daniele Derudas; Giorgina Specchia; Paola Curci; Vincenzo Pavone; Bernardo Rossini; Domenico Ribatti; Barbara Bottazzi; Alberto Mantovani; Marco Presta; Franco Dammacco; Angelo Vacca

Pentraxin 3 (PTX3) is a soluble pattern recognition receptor that binds with high affinity and selectivity to fibroblast growth factor‐2 (FGF2), thus inhibiting its pro‐angiogenic activity. Here we investigated the effects of PTX3 on monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patient‐derived bone marrow (BM) plasma cells (PCs), endothelial cells (ECs), and fibroblasts (FBs), and assessed whether PTX3 can modulate the cross‐talk between PCs and those microenvironment cells. PTX3 and FGF2 expression was evaluated by ELISA. Functional studies, including cell viability, wound healing, chemotaxis, and Matrigel® assays, were performed on MGUS and MM ECs and FBs upon the PTX3 treatment. Through western blot PTX3‐induced modulation in FGF2/FGF receptor signalling pathways was evaluated in MGUS and MM ECs and FBs through western blot. Co‐cultures between MM ECs/FBs and human PC lines were used to evaluate possible PTX3 indirect effects on MM PCs. Adhesion molecules were studied by flow cytometry. PTX3 provides a direct time‐ and dose‐dependent apoptotic effect on MM ECs and FBs, but not on either MM primary PCs or human PC lines. PTX3 inhibits migration of MM ECs and FBs in a dose‐dependent manner, and impacts in vitro and in vivo FGF2‐mediated MM angiogenesis. Co‐cultures of PCs and ECs/FBs show that PTX3 treatment indirectly impairs PC viability and adhesion. We conclude that PTX3 is an anti‐angiogenic factor in MM and behaves as a cytotoxic molecule on MM cells by inhibiting the cross‐talk between PCs and ECs/FBs. Copyright


Journal of Hepatology | 2014

Dendritic cell maturation in HCV infection: Altered regulation of MHC class I antigen processing-presenting machinery

Patrizia Leone; Mariangela Di Tacchio; Simona Berardi; T. Santantonio; M. Fasano; Soldano Ferrone; Angelo Vacca; Franco Dammacco; Vito Racanelli

BACKGROUND & AIMS Modulation of dendritic cell (DC) function has been theorized as one of the mechanisms used by hepatitis C virus (HCV) to evade the host immune response and cause persistent infection. METHODS We used a range of cell and molecular biology techniques to study DC subsets from uninfected and HCV-infected individuals. RESULTS We found that patients with persistent HCV infection have lower numbers of circulating myeloid DC and plasmacytoid DC than healthy controls or patients who spontaneously recovered from HCV infection. Nonetheless, DC from patients with persistent HCV infection display normal phagocytic activity, typical expression of the class I and II HLA and co-stimulatory molecules, and conventional cytokine production when stimulated to mature in vitro. In contrast, they do not display the strong switch from immunoproteasome to standard proteasome subunit expression and the upregulation of the transporter-associated proteins following stimulation, which were instead observed in DC from uninfected individuals. This different modulation of components of the HLA class I antigen processing-presenting machinery results in a differential ability to present a CD8(+) T cell epitope whose generation is dependent on the LMP7 immunoproteasome subunit. CONCLUSIONS Overall, these findings establish that under conditions of persistent HCV antigenemia, HLA class I antigen processing and presentation are distinctively regulated during DC maturation.

Collaboration


Dive into the Simona Berardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge