Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simona Caporali.
Molecular Pharmacology | 2008
Simona Caporali; Lauretta Levati; Giuseppe Starace; Gianluca Ragone; Enzo Bonmassar; Ester Alvino; Stefania D'Atri
The phosphatidylinositol 3-kinase/AKT pathway is activated frequently in human cancer, and it has been implicated in tumor cell proliferation, survival, and chemoresistance. In this study, we addressed the role of AKT in cellular responses to the therapeutic methylating agent temozolomide (TMZ), and we investigated the possible link between TMZ-induced modulation of AKT function and activation of ataxia-telangiectasia and Rad3-related (ATR)- and ataxia telangiectasia mutated (ATM)-dependent signaling pathways. We found that clinically relevant concentrations of TMZ caused activation of endogenous AKT in lymphoblastoid cells, and in colon and breast cancer cells, and that this molecular event required a functional mismatch repair system. Transfection of a dominant-negative kinase-dead form of AKT1 into breast cancer cells abrogated TMZ-induced activation of endogenous AKT, and it markedly enhanced cell sensitivity to the drug. Likewise, exposure of the MMR-proficient cell lines to the AKT inhibitor d-3-deoxy-2-O-methyl-myo inositol 1-[(R)-2-methoxy-3-(octadecyloxy)-propyl hydrogen phosphate] (SH-5) impaired AKT phosphorylation in response to TMZ, and it significantly increased cell chemosensitivity. Furthermore, small interfering RNA (siRNA)-mediated reduction of AKT1 expression in colon cancer cells potentiated the growth inhibitory effects of TMZ. Inhibition of ATM expression in colon cancer cells by siRNA did not impair TMZ-induced activation of AKT, whereas siRNA-mediated inhibition of ATR prevented AKT activation in response to the drug and increased cell chemosensitivity. These results strongly support the hypothesis that clinical benefit could be obtained by combining TMZ with inhibitors of the AKT pathway. Moreover, they provide the first evidence of a novel function of ATR as an upstream activator of AKT in response to DNA damage induced by O6-guanine-methylating agents.
Pharmacological Research | 2010
Simona Caporali; Ester Alvino; Giuseppe Starace; Marina Ciomei; Maria Gabriella Brasca; Lauretta Levati; Alberto Garbin; Daniele Castiglia; Claudia Covaciu; Enzo Bonmassar; Stefania D'Atri
PHA-848125 is a novel cyclin-dependent kinase inhibitor under Phase I/II clinical investigation. In this study, we describe, for the first time, the effect of PHA-848125 on human melanoma cells in vitro. Seven melanoma cell lines with different sensitivity to temozolomide (TMZ) were exposed to PHA-848125 for 5 days and then assayed for cell growth. In all cases, including TMZ-resistant cells, PHA-848125 IC(50) values were significantly below the maximum plasma concentrations achievable in the clinic. In the most PHA-848125-sensitive cell line, the drug caused a concentration-dependent G(1) arrest. PHA-848125 also impaired phosphorylation of the retinoblastoma protein at CDK2 and CDK4 specific sites, decreased retinoblastoma protein and cyclin A levels, and increased p21(Cip1), p27(Kip1) and p53 expression. Combined treatment with fixed ratios of TMZ plus PHA-848125 was studied in three melanoma cell lines. PHA-848125 was added to the cells 48 h after TMZ and cell growth was evaluated after 3 additional days of culture. Parallel experiments were performed in the presence of O(6)-benzylguanine (BG), to prevent repair of methyl adducts at O(6)-guanine induced by TMZ. Drug combination of TMZ plus BG and PHA-848125 produced additive or synergistic effects on cell growth, depending on the cell line. In the absence of BG, the combination was still more active than the single agents in the cell line moderately sensitive to TMZ, but comparable to PHA-848125 alone in the two TMZ-resistant cell lines. When TMZ plus BG were used in combination with PHA-848125 against cultured normal melanocytes, neither synergistic nor additive antiproliferative effects were observed. Our results indicate that PHA-848125 can have a therapeutic potential in melanoma patients, alone or combined with TMZ. Moreover this agent appears to be particularly attractive on the bases of its effectiveness against TMZ-resistant melanoma cells.
Biochemical Pharmacology | 2012
Simona Caporali; Ester Alvino; Lauretta Levati; Alessia Isabella Esposito; Marina Ciomei; Maria Gabriella Brasca; Donatella Del Bufalo; Marianna Desideri; Enzo Bonmassar; Ulrich Pfeffer; Stefania D’Atri
We previously demonstrated that PHA-848125, a cyclin-dependent kinase inhibitor presently under Phase II clinical investigation, impairs melanoma cell growth. In this study, gene expression profiling showed that PHA-848125 significantly modulated the expression of 128 genes, predominantly involved in cell cycle control, in the highly drug-sensitive GL-Mel (p53 wild-type) melanoma cells. Up-regulation of 4 selected genes (PDCD4, SESN2, DDIT4, DEPDC6), and down-regulation of 6 selected genes (PTTG1, CDC25A, AURKA, AURKB, PLK1, BIRC5) was confirmed at protein levels. The same protein analysis performed in PHA-848125-treated M10 melanoma cells - p53 mutated and less sensitive to the drug than GL-Mel cells - revealed no DEPDC6 expression and no changes of PTTG1, PDCD4 and BIRC5 levels. Upon PHA-848125 treatment, a marked PTTG1 down-modulation was also observed in A375 cells (p53 wild-type) but not in CN-Mel cells (p53 mutated). PTTG1 silencing significantly inhibited melanoma cell proliferation and induced senescence, with effects less pronounced in p53 mutated cells. PTTG1 silencing increased PHA-848125 sensitivity of p53 mutated cells but not that of A375 or GL-Mel cells. Accordingly, in M10 but not in A375 cells a higher level of senescence was detected in PHA-848125-treated/PTTG1-silenced cells with respect to PHA-848125-treated controls. In A375 and GL-Mel cells, TP53 silencing attenuated PHA-848125-induced down-modulation of PTTG1 and decreased cell sensitivity to the drug. These findings indicate that PHA-848125-induced down-regulation of PTTG1 depends, at least in part, on p53 function and contributes to the antiproliferative activity of the drug. Our study provides further molecular insight into the antitumor mechanism of PHA-848125.
Journal of Translational Medicine | 2012
Simona Caporali; Lauretta Levati; Grazia Graziani; Alessia Muzi; Maria Grazia Atzori; Enzo Bonmassar; Giuseppe Palmieri; Paolo Antonio Ascierto; Stefania D’Atri
BackgroundMost DNA-damaging chemotherapeutic agents activate the transcription factor nuclear factor κB (NF-κB). However, NF-κB activation can either protect from or contribute to the growth suppressive effects of the agent. We previously showed that the DNA-methylating drug temozolomide (TMZ) activates AKT, a positive modulator of NF-κB, in a mismatch repair (MMR) system-dependent manner. Here we investigated whether NF-κB is activated by TMZ and whether AKT is involved in this molecular event. We also evaluated the functional consequence of inhibiting NF-κB on tumor cell response to TMZ.MethodsAKT phosphorylation, NF-κB transcriptional activity, IκB-α degradation, NF-κB2/p52 generation, and RelA and NF-κB2/p52 nuclear translocation were investigated in TMZ-treated MMR-deficient (HCT116, 293TLα-) and/or MMR-proficient (HCT116/3-6, 293TLα+, M10) cells. AKT involvement in TMZ-induced activation of NF-κB was addressed in HCT116/3-6 and M10 cells transiently transfected with AKT1-targeting siRNA or using the isogenic MMR-proficient cell lines pUSE2 and KD12, expressing wild type or kinase-dead mutant AKT1. The effects of inhibiting NF-κB on sensitivity to TMZ were investigated in HCT116/3-6 and M10 cells using the NF-κB inhibitor NEMO-binding domain (NBD) peptide or an anti-RelA siRNA.ResultsTMZ enhanced NF-κB transcriptional activity, activated AKT, induced IκB-α degradation and RelA nuclear translocation in HCT116/3-6 and M10 but not in HCT116 cells. In M10 cells, TMZ promoted NF-κB2/p52 generation and nuclear translocation and enhanced the secretion of IL-8 and MCP-1. TMZ induced RelA nuclear translocation also in 293TLα+ but not in 293TLα- cells. AKT1 silencing inhibited TMZ-induced IκB-α degradation and NF-κB2/p52 generation. Up-regulation of NF-κB transcriptional activity and nuclear translocation of RelA and NF-κB2/p52 in response to TMZ were impaired in KD12 cells. RelA silencing in HCT116/3-6 and M10 cells increased TMZ-induced growth suppression. In M10 cells NBD peptide reduced basal NF-κB activity, abrogated TMZ-induced up-regulation of NF-κB activity and increased sensitivity to TMZ. In HCT116/3-6 cells, the combined treatment with NBD peptide and TMZ produced additive growth inhibitory effects.ConclusionNF-κB is activated in response to TMZ in a MMR- and AKT-dependent manner and confers protection against drug-induced cell growth inhibition. Our findings suggest that a clinical benefit could be obtained by combining TMZ with NF-κB inhibitors.
International Journal of Cancer | 2014
Stephanie B. Hatch; Lonnie P. Swift; Simona Caporali; Rebecca Carter; Esme J. Hill; Thomas P. MacGregor; Stefania D'Atri; Mark R. Middleton; Peter J. McHugh; Ricky A. Sharma
As the options for systemic treatment of malignant melanoma (MM) increase, the need to develop biomarkers to identify patients who might benefit from cytotoxic chemotherapy becomes more apparent. In preclinical models, oxaliplatin has activity in cisplatin‐resistant cells. In this study, we have shown that oxaliplatin forms interstrand crosslinks (ICLs) in cellular DNA and that loss of the heterodimeric structure‐specific endonuclease XPF‐ERCC1 causes hypersensitivity to oxaliplatin in mammalian cells. XPF deficiency resulted in late S‐phase arrest and persistence of double‐strand breaks following oxaliplatin treatment. In a panel of 12 MM cell lines, oxaliplatin sensitivity correlated with XPF and ERCC1 protein levels. The knockdown of ERCC1 and XPF protein levels by RNA interference increased sensitivity of cancer cells to oxaliplatin; overexpression of exogenous ERCC1 significantly decreased drug sensitivity. Following immunohistochemical optimization, XPF protein levels were quantified in MM tissue samples from 183 patients, showing variation in expression and no correlation with prognosis. In 57 patients with MM treated with cisplatin or carboplatin, XPF protein levels did not predict the likelihood of clinical response. We propose that oxaliplatin should not be discarded as a potential treatment for MM on the basis of the limited activity of cisplatin in unselected patients. Moreover, we show that XPF‐ERCC1 protein levels are a key determinant of the sensitivity of melanoma cells to oxaliplatin in vitro. Immunohistochemical detection of XPF appears suitable for development as a tissue biomarker for potentially selecting patients for oxaliplatin treatment in a prospective clinical trial.
American Journal of Clinical Pathology | 2014
Ester Alvino; Francesca Passarelli; Elda Cannavo; Cristina Fortes; Simona Mastroeni; Simona Caporali; Josef Jiricny; Gian Carlo Antonini Cappellini; Alessandro Scoppola; Paolo Marchetti; Andrea Modesti; Stefania D'Atri
OBJECTIVES The outcome of patients with primary melanoma (PM) cannot be completely explained based on currently adopted clinical-histopathologic criteria. In this study, we evaluated the potential prognostic value of mismatch repair protein expression in PMs. METHODS We examined the immunohistochemical staining of mismatch repair proteins in 18 benign nevi and 101 stage I to III PMs and investigated their association with tumor clinicopathologic variables and melanoma mortality. RESULTS Expression of MSH2, MLH1, and PMS2 was high in benign nevi and reduced in a subset of PMs. Conversely, MSH6 expression was absent or extremely low in benign nevi and increased in a subset of PMs. In the multivariate analysis, including sex, age, Breslow thickness, and ulceration, high MSH6 expression in PMs (ie, immunostaining in >20% of tumor cells) was significantly associated with an increased risk of melanoma mortality (relative risk, 3.76; 95% confidence interval, 1.12-12.70). CONCLUSIONS MSH6 protein expression can be a valuable marker to improve prognosis assessment in PMs.
International Journal of Oncology | 2016
Simona Caporali; Ester Alvino; Pedro Miguel Lacal; Lauretta Levati; Giorgio Giurato; Domenico Memoli; Elisabetta Caprini; Gian Carlo Antonini Cappellini; Stefania D'Atri
BRAF inhibitors (BRAFi) have proven clinical benefits in patients with BRAF-mutant melanoma. However, acquired resistance eventually arises. The effects of BRAFi on melanoma cell proliferation and survival have been extensively studied, and several mechanisms involved in acquired resistance to the growth suppressive activity of these drugs have been identified. Much less is known about the impact of BRAFi, and in particular of dabrafenib, on the invasive potential of melanoma cells. In the present study, the BRAF-mutant human melanoma cell line A375 and its dabrafenib-resistant subline A375R were analyzed for invasive capacity, expression of vascular endothelial growth factor receptor (VEGFR)-2, and secretion of VEGF-A and matrix metalloproteinase (MMP)-9, under basal conditions or in response to dabrafenib. The consequences of inhibiting the PI3K/AKT/mTOR pathway on A375R cell responses to dabrafenib were also evaluated. We found that A375R cells were more invasive and secreted higher levels of VEGF-A and MMP-9 as compared with A375 cells. Dabrafenib reduced invasiveness, VEGFR-2 expression and VEGF-A secretion in A375 cells, whereas it increased invasiveness, VEGF-A and MMP-9 release in A375R cells. In these latter cells, the stimulating effects of dabrafenib on the invasive capacity were markedly impaired by the anti-VEGF‑A antibody bevacizumab, or by AKT1 silencing. A375R cells were not cross-resistant to the PI3K/mTOR inhibitor GSK2126458A. Moreover, this inhibitor given in combination with dabrafenib efficiently counteracted the stimulating effects of the BRAFi on invasiveness and VEGF-A and MMP-9 secretion. Our data demonstrate that melanoma cells with acquired resistance to dabrafenib possess a more invasive phenotype which is further stimulated by exposure to the drug. Substantial evidence indicates that continuing BRAFi therapy beyond progression produces a clinical benefit. Our results suggest that after the development of resistance, a regimen combining BRAFi with bevacizumab or with inhibitors of the PI3K/AKT/mTOR pathway might be more effective than BRAFi monotherapy.
Oncotarget | 2017
Federica Ruffini; Lauretta Levati; Grazia Graziani; Simona Caporali; Maria Grazia Atzori; Stefania D’Atri; Pedro Miguel Lacal
Despite recent progress in advanced melanoma therapy, identification of signalling pathways involved in melanoma switch from proliferative to invasive states is still crucial to uncover new therapeutic targets for improving the outcome of metastatic disease. Neuropilin-1 (NRP-1), a co-receptor for vascular endothelial growth factor-A (VEGF-A) tyrosine kinase receptors (VEGFRs), has been suggested to play a relevant role in melanoma progression. NRP-1 can be activated by VEGF-A also in the absence of VEGFRs, triggering specific signal transduction pathways (e.g. p130Cas phosphorylation). Since melanoma cells co-expressing high levels of NRP-1 and platelet derived growth factor-C (PDGF-C) show a highly invasive behaviour and PDGF-C shares homology with VEGF-A, in this study we have investigated whether PDGF-C directly interacts with NRP-1 and promotes melanoma aggressiveness. Results demonstrate that PDGF-C specifically binds in vitro to NRP-1. In melanoma cells expressing NRP-1 but lacking PDGFRα, PDGF-C stimulates extra-cellular matrix (ECM) invasion and induces p130Cas phosphorylation. Blockade of PDGF-C function by neutralizing antibodies or reduction of its secretion by specific siRNA inhibit ECM invasion and vasculogenic mimicry. Moreover, PDGF-C silencing significantly down-modulates the expression of Snail, a transcription factor involved in tumour invasiveness that is highly expressed in NRP-1 positive melanoma cells. In conclusion, our results demonstrate for the first time a direct activation of NRP-1 by PDGF-C and strongly suggest that autocrine and/or paracrine stimulation of NRP-1 by PDGF-C might contribute to the acquisition of a metastatic phenotype by melanoma cells.Despite recent progress in advanced melanoma therapy, identification of signalling pathways involved in melanoma switch from proliferative to invasive states is still crucial to uncover new therapeutic targets for improving the outcome of metastatic disease. Neuropilin-1 (NRP-1), a co-receptor for vascular endothelial growth factor-A (VEGF-A) tyrosine kinase receptors (VEGFRs), has been suggested to play a relevant role in melanoma progression. NRP-1 can be activated by VEGF-A also in the absence of VEGFRs, triggering specific signal transduction pathways (e.g. p130Cas phosphorylation). Since melanoma cells co-expressing high levels of NRP-1 and platelet derived growth factor-C (PDGF-C) show a highly invasive behaviour and PDGF-C shares homology with VEGF-A, in this study we have investigated whether PDGF-C directly interacts with NRP-1 and promotes melanoma aggressiveness. Results demonstrate that PDGF-C specifically binds in vitro to NRP-1. In melanoma cells expressing NRP-1 but lacking PDGFRα, PDGF-C stimulates extra-cellular matrix (ECM) invasion and induces p130Cas phosphorylation. Blockade of PDGF-C function by neutralizing antibodies or reduction of its secretion by specific siRNA inhibit ECM invasion and vasculogenic mimicry. Moreover, PDGF-C silencing significantly down-modulates the expression of Snail, a transcription factor involved in tumour invasiveness that is highly expressed in NRP-1 positive melanoma cells. In conclusion, our results demonstrate for the first time a direct activation of NRP-1 by PDGF-C and strongly suggest that autocrine and/or paracrine stimulation of NRP-1 by PDGF-C might contribute to the acquisition of a metastatic phenotype by melanoma cells.
Journal of Translational Medicine | 2015
Federica Ruffini; Grazia Graziani; Lauretta Levati; Lucio Tentori; Simona Caporali; Stefania D’Atri; Pedro Miguel Lacal
Background The molecular mechanisms associated with the acquisition of a metastatic phenotype by melanoma cells are not very well understood. Therefore, the identification of molecular determinants involved in the metastatic switch that may either cause or contribute to the aggressiveness of melanoma is of primary relevance. We had previously identified neuropilin-1 (NRP-1), a co-receptor of the vascular endothelial growth factor-A (VEGF-A), as an important determinant of melanoma aggressiveness, in clones of the human melanoma cell line M14, expressing or not NRP-1 [1,2]. We demonstrated that even though the simultaneous presence of both VEGFR-2 and NRP-1 potentiates VEGF-A secretion and the aggressiveness of melanoma cells, NRP-1 is by itself able to promote cell invasion [1]. During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry) [3]. In the present study we analysed the mechanisms responsible for the aggressive phenotype of NRP-1 expressing melanoma cells. Materials and methods Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer in Boyden chambers and to form tubule-like structures on matrigel gels. Pre-incubation of the cells with specific blocking antibodies allowed the identification of specific integrins and other molecules relevant to these processes. The results obtained by anti-integrin antibodies, showing the involvement of avb 5i ntegrin in the aggressiveness of melanoma cells expressing NRP-1, were confirmed by ITGB5 gene silencing and by the use of cilengitide, a potent inhibitor of aν integrins activation. Results
Oncotarget | 2017
Simona Caporali; Ester Alvino; Pedro Miguel Lacal; Federica Ruffini; Lauretta Levati; Laura Bonmassar; Alessandro Scoppola; Paolo Marchetti; Simona Mastroeni; Gian Carlo Antonini Cappellini; Stefania D’Atri
The pituitary tumor transforming gene 1 (PTTG1) is implicated in tumor growth, metastasis and drug resistance. Here, we investigated the involvement of PTTG1 in melanoma cell proliferation, invasiveness and response to the BRAF inhibitor (BRAFi) dabrafenib. We also preliminary assessed the potential value of circulating PTTG1 protein to monitor melanoma patient response to BRAFi or to dabrafenib plus trametinib. Dabrafenib-resistant cell lines (A375R and SK-Mel28R) were more invasive than their drug-sensitive counterparts (A375 and SK-Mel28), but expressed comparable PTTG1 levels. Dabrafenib abrogated PTTG1 expression and impaired invasion of the extracellular matrix (ECM) in A375 and SK-Mel28 cells. In contrast, it affected neither PTTG1 expression in A375R and SK-Mel28R cells, nor ECM invasion in the latter cells, while further stimulated A375R cell invasiveness. Assessment of proliferation and ECM invasion in control and PTTG1-silenced A375 and SK-Mel28 cells, exposed or not to dabrafenib, demonstrated that the inhibitory effects of this drug were, at least in part, dependent on its ability to down-regulate PTTG1 expression. PTTG1-silencing also impaired proliferation and invasiveness of A375R and SK-Mel28R cells, and counteracted dabrafenib-induced stimulation of ECM invasion in A375R cells. Further experiments performed in A375R cells indicated that PTTG1-silencing impaired cell invasiveness through inhibition of MMP-9 and that PTTG1 expression and ECM invasion could be also reduced by the CDK4/6 inhibitor LEE011. PTTG1 targeting might, therefore, represent a useful strategy to impair proliferation and metastasis of melanomas resistant to BRAFi. Circulating PTTG1 also appeared to deserve further investigation as biomarker to monitor patient response to targeted therapy.