Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Casini is active.

Publication


Featured researches published by Simona Casini.


Circulation | 2005

Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome : a combined electrophysiological, genetic, histopathologic, and computational study

Ruben Coronel; Simona Casini; Tamara T. Koopmann; Francien J. G. Wilms-Schopman; Arie O. Verkerk; Joris R. de Groot; Zahurul A. Bhuiyan; Connie R. Bezzina; Marieke W. Veldkamp; André C. Linnenbank; Allard C. van der Wal; Hanno L. Tan; Pedro Brugada; Arthur A.M. Wilde; Jacques M.T. de Bakker

Background— The mechanism of ECG changes and arrhythmogenesis in Brugada syndrome (BS) patients is unknown. Methods and Results— A BS patient without clinically detected cardiac structural abnormalities underwent cardiac transplantation for intolerable numbers of implantable cardioverter/defibrillator discharges. The patient’s explanted heart was studied electrophysiologically and histopathologically. Whole-cell currents were measured in HEK293 cells expressing wild-type or mutated sodium channels from the patient. The right ventricular outflow tract (RVOT) endocardium showed activation slowing and was the origin of ventricular fibrillation without a transmural repolarization gradient. Conduction restitution was abnormal in the RVOT but normal in the left ventricle. Right ventricular hypertrophy and fibrosis with epicardial fatty infiltration were present. HEK293 cells expressing a G1935S mutation in the gene encoding the cardiac sodium channel exhibited enhanced slow inactivation compared with wild-type channels. Computer simulations demonstrated that conduction slowing in the RVOT might have been the cause of the ECG changes. Conclusions— In this patient with BS, conduction slowing based on interstitial fibrosis, but not transmural repolarization differences, caused the ECG signs and was the origin of ventricular fibrillation.


Circulation | 2012

Cardiomyocytes Derived From Pluripotent Stem Cells Recapitulate Electrophysiological Characteristics of an Overlap Syndrome of Cardiac Sodium Channel Disease

Richard P. Davis; Simona Casini; Cathelijne W. van den Berg; Maaike Hoekstra; Carol Ann Remme; Cheryl Dambrot; Daniela Salvatori; Dorien Ward-van Oostwaard; Arthur A.M. Wilde; Connie R. Bezzina; Arie O. Verkerk; Christian Freund

Background— Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain- and loss-of-function genetic disorders affecting the Na+ current (INa) because of the immaturity of the PSC-derived cardiomyocytes. To address this issue, we generated multiple PSC lines containing a Na+ channel mutation causing a cardiac Na+ channel overlap syndrome. Method and Results— Induced PSC (iPSC) lines were generated from mice carrying the Scn5a1798insD/+ (Scn5a-het) mutation. These mouse iPSCs, along with wild-type mouse iPSCs, were compared with the targeted mouse embryonic stem cell line used to generate the mutant mice and with the wild-type mouse embryonic stem cell line. Patch-clamp experiments showed that the Scn5a-het cardiomyocytes had a significant decrease in INa density and a larger persistent INa compared with Scn5a-wt cardiomyocytes. Action potential measurements showed a reduced upstroke velocity and longer action potential duration in Scn5a-het myocytes. These characteristics recapitulated findings from primary cardiomyocytes isolated directly from adult Scn5a-het mice. Finally, iPSCs were generated from a patient with the equivalent SCN5A1795insD/+ mutation. Patch-clamp measurements on the derivative cardiomyocytes revealed changes similar to those in the mouse PSC-derived cardiomyocytes. Conclusion— Here, we demonstrate that both embryonic stem cell- and iPSC-derived cardiomyocytes can recapitulate the characteristics of a combined gain- and loss-of-function Na+ channel mutation and that the electrophysiological immaturity of PSC-derived cardiomyocytes does not preclude their use as an accurate model for cardiac Na+ channel disease.


The EMBO Journal | 2013

Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long‐QT syndrome

Milena Bellin; Simona Casini; Richard P. Davis; Cristina D'Aniello; Jessica Haas; Dorien Ward-van Oostwaard; Leon G.J. Tertoolen; Christian Billy Jung; David A. Elliott; Andrea Welling; Karl-Ludwig Laugwitz; Alessandra Moretti

Patient‐specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long‐QT syndromes (LQTS). To study the LQT2‐associated c.A2987T (N996I) KCNH2 mutation under genetically defined conditions, we derived iPSCs from a patient carrying this mutation and corrected it. Furthermore, we introduced the same point mutation in human embryonic stem cells (hESCs), generating two genetically distinct isogenic pairs of LQTS and control lines. Correction of the mutation normalized the current (IKr) conducted by the HERG channel and the action potential (AP) duration in iPSC‐derived cardiomyocytes (CMs). Introduction of the same mutation reduced IKr and prolonged the AP duration in hESC‐derived CMs. Further characterization of N996I‐HERG pathogenesis revealed a trafficking defect. Our results demonstrated that the c.A2987T KCNH2 mutation is the primary cause of the LQTS phenotype. Precise genetic modification of pluripotent stem cells provided a physiologically and functionally relevant human cellular context to reveal the pathogenic mechanism underlying this specific disease phenotype.


Stem Cells and Development | 2015

Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?

Christiaan C. Veerman; Georgios Kosmidis; Simona Casini; Arie O. Verkerk; Milena Bellin

Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we provide an overview of the strategies currently being used to increase maturation in culture, which include prolongation of time in culture, exposure to electrical stimulation, application of mechanical strain, growth in three-dimensional tissue configuration, addition of non-cardiomyocytes, use of hormones and small molecules, and alteration of the extracellular environment. By comparing the outcomes of these studies, we identify the approaches most likely to improve functional maturation of hPSC-CMs in terms of their electrophysiology and excitation-contraction coupling.


Cardiovascular Research | 2009

Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes

Simona Casini; Arie O. Verkerk; Marcel M. G. J. van Borren; Antoni C.G. van Ginneken; Marieke W. Veldkamp; Jacques M.T. de Bakker; Hanno L. Tan

AIMS Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes is unresolved. We studied whether Ca(i)(2+) modulates sodium channels in ventricular myocytes at Ca(i)(2+) concentrations ([Ca(i)(2+)]) present during the cardiac AP (0-500 nM), and how this modulation affects sodium channel properties in heart failure (HF), a condition in which Ca(i)(2+) homeostasis is disturbed. METHODS AND RESULTS Sodium current (I(Na)) and maximal AP upstroke velocity (dV/dt(max)), a measure of I(Na), were studied at 20 and 37 degrees C, respectively, in freshly isolated left ventricular myocytes of control and HF rabbits, using whole-cell patch-clamp methodology. [Ca(i)(2+)] was varied using different pipette solutions, the Ca(i)(2+) buffer BAPTA, and caffeine administration. Elevated [Ca(i)(2+)] reduced I(Na) density and dV/dt(max), but caused no I(Na) gating changes. Reductions in I(Na) density occurred simultaneously with increase in [Ca(i)(2+)], suggesting that these effects were due to permeation block. Accordingly, unitary sodium current amplitudes were reduced at higher [Ca(i)(2+)]. While I(Na) density and gating at fixed [Ca(i)(2+)] were not different between HF and control, reductions in dV/dt(max) upon increases in stimulation rate were larger in HF than in control; these differences were abolished by BAPTA. CONCLUSION Ca(i)(2+) exerts acute modulation of I(Na) density in ventricular myocytes, but does not modify I(Na) gating. These effects, occurring rapidly and in the [Ca(i)(2+)] range observed physiologically, may contribute to beat-to-beat regulation of cardiac excitability in health and disease.


Cardiovascular Research | 2010

Tubulin polymerization modifies cardiac sodium channel expression and gating

Simona Casini; Hanno L. Tan; Ilker Demirayak; Carol Ann Remme; Ahmad S. Amin; Brendon P. Scicluna; Houssine Chatyan; Jan M. Ruijter; Connie R. Bezzina; Antoni C.G. van Ginneken; Marieke W. Veldkamp

AIMS Treatment with the anticancer drug taxol (TXL), which polymerizes the cytoskeleton protein tubulin, may evoke cardiac arrhythmias based on reduced human cardiac sodium channel (Na(v)1.5) function. Therefore, we investigated whether enhanced tubulin polymerization by TXL affects Na(v)1.5 function and expression and whether these effects are beta1-subunit-mediated. METHODS AND RESULTS Human embryonic kidney (HEK293) cells, transfected with SCN5A cDNA alone (Na(v)1.5) or together with SCN1B cDNA (Na(v)1.5 + beta1), and neonatal rat cardiomyocytes (NRCs) were incubated in the presence and in the absence of 100 microM TXL. Sodium current (I(Na)) characteristics were studied using patch-clamp techniques. Na(v)1.5 membrane expression was determined by immunocytochemistry and confocal microscopy. Pre-treatment with TXL reduced peak I(Na) amplitude nearly two-fold in both Na(v)1.5 and Na(v)1.5 + beta1, as well as in NRCs, compared with untreated cells. Accordingly, HEK293 cells and NRCs stained with anti-Na(v)1.5 antibody revealed a reduced membrane-labelling intensity in the TXL-treated groups. In addition, TXL accelerated I(Na) decay of Na(v)1.5 + beta1, whereas I(Na) decay of Na(v)1.5 remained unaltered. Finally, TXL reduced the fraction of channels that slow inactivated from 31% to 18%, and increased the time constant of slow inactivation by two-fold in Na(v)1.5. Conversely, slow inactivation properties of Na(v)1.5 + beta1 were unchanged by TXL. CONCLUSION Enhanced tubulin polymerization reduces sarcolemmal Na(v)1.5 expression and I(Na) amplitude in a beta1-subunit-independent fashion and causes I(Na) fast and slow inactivation impairment in a beta1-subunit-dependent way. These changes may underlie conduction-slowing-dependent cardiac arrhythmias under conditions of enhanced tubulin polymerization, e.g. TXL treatment and heart failure.


Stem cell reports | 2013

PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

Matthew J. Birket; Simona Casini; Georgios Kosmidis; David A. Elliott; Akos A. Gerencser; Antonius Baartscheer; Cees A. Schumacher; Pier G. Mastroberardino; Andrew G. Elefanty; Ed Stanley

Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease.


Cardiovascular Research | 2017

Anti-arrhythmic potential of the late sodium current inhibitor GS-458967 in murine Scn5a-1798insD+/- and human SCN5A-1795insD+/- iPSC-derived cardiomyocytes.

Vincent Portero; Simona Casini; Maaike Hoekstra; Arie O. Verkerk; Isabella Mengarelli; Luiz Belardinelli; Sridharan Rajamani; Arthur A.M. Wilde; Connie R. Bezzina; Marieke W. Veldkamp; Carol Ann Remme

Aims Selective inhibition of cardiac late sodium current (INaL) is an emerging target in the treatment of ventricular arrhythmias. We investigated the electrophysiological effects of GS-458967 (GS967), a potent, selective inhibitor of INaL, in an overlap syndrome model of both gain and loss of sodium channel function, comprising cardiomyocytes derived from both human SCN5A-1795insD+/- induced pluripotent stem cells (hiPSC-CMs) and mice carrying the homologous mutation Scn5a-1798insD+/-. Methods and results On patch-clamp analysis, GS967 (300 nmol/l) reduced INaL and action potential (AP) duration in isolated ventricular myocytes from wild type and Scn5a-1798insD+/- mice, as well as in SCN5A-1795insD+/- hiPSC-CMs. GS967 did not affect the amplitude of peak INa, but slowed its recovery, and caused a negative shift in voltage-dependence of INa inactivation. GS967 reduced AP upstroke velocity in Scn5a-1798insD+/- myocytes and SCN5A-1795insD+/- hiPSC-CMs. However, the same concentration of GS967 did not affect conduction velocity in Scn5a-1798insD+/- mouse isolated hearts, as assessed by epicardial mapping. GS967 decreased the amplitude of delayed after depolarizations and prevented triggered activity in mouse Scn5a-1798insD+/- cardiomyocytes. Conclusion The INaL inhibitor GS967 decreases repolarization abnormalities and has anti-arrhythmic effects in the absence of deleterious effects on cardiac conduction. Thus, selective inhibition of INaL constitutes a promising pharmacological treatment of cardiac channelopathies associated with enhanced INaL. Our findings furthermore implement hiPSC-CMs as a valuable tool for assessment of novel pharmacological approaches in inherited sodium channelopathies.


Experimental Cell Research | 2014

Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones.

Cheryl Dambrot; Henk P. J. Buermans; Eszter Varga; Georgios Kosmidis; Karin Langenberg; Simona Casini; David A. Elliott; Andras Dinnyes; Douwe E. Atsma; Stefan R. Braam; Richard P. Davis

Recent methodological advances have improved the ease and efficiency of generating human induced pluripotent stem cells (hiPSCs), but this now typically results in a greater number of hiPSC clones being derived than can be wholly characterized. It is therefore imperative that methods are developed which facilitate rapid selection of hiPSC clones most suited for the downstream research aims. Here we describe a combination of procedures enabling the simultaneous screening of multiple clones to determine their genomic integrity as well as their cardiac differentiation potential within two weeks of the putative reprogrammed colonies initially appearing. By coupling splinkerette-PCR with Ion Torrent sequencing, we could ascertain the number and map the proviral integration sites in lentiviral-reprogrammed hiPSCs. In parallel, we developed an effective cardiac differentiation protocol that generated functional cardiomyocytes within 10 days without requiring line-specific optimization for any of the six independent human pluripotent stem cell lines tested. Finally, to demonstrate the scalable potential of these procedures, we picked 20 nascent iPSC clones and performed these independent assays concurrently. Before the clones required passaging, we were able to identify clones with a single integrated copy of the reprogramming vector and robust cardiac differentiation potential for further analysis.


Biochemical and Biophysical Research Communications | 2015

Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

Georgios Kosmidis; Milena Bellin; Marcelo C. Ribeiro; Berend van Meer; Dorien Ward-van Oostwaard; Robert Passier; Leon G.J. Tertoolen; Simona Casini

One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.

Collaboration


Dive into the Simona Casini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard P. Davis

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorien Ward-van Oostwaard

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Georgios Kosmidis

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hanno L. Tan

Academic Medical Center

View shared research outputs
Top Co-Authors

Avatar

Milena Bellin

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge