Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Collina is active.

Publication


Featured researches published by Simona Collina.


Neurobiology of Disease | 2014

Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation

Marco Peviani; Eleonora Salvaneschi; Leonardo Bontempi; Alessandro Petese; Antonio Manzo; Daniela Rossi; Mario Salmona; Simona Collina; Paolo Bigini; Daniela Curti

The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.


Expert Opinion on Therapeutic Patents | 2013

Sigma receptor modulators: a patent review

Simona Collina; Raffaella Gaggeri; Annamaria Marra; Andrea Bassi; Sara Negrinotti; Francesca Negri; Daniela Rossi

Introduction: Sigma receptors are involved in several central nervous system (CNS) disorders, including mood disorders (depression and anxiety), psychosis, schizophrenia, movement disorders (i.e., Parkinsons disease) and memory deficits (i.e., Alzheimers disease). Recently, the involvement of sigma receptors in neuropathic pain and cancer has also been observed. Areas covered: This review aims at highlighting the research advancements published in the patent literature between 1986 and 2012, dividing patents according to both their time frame and applicants. The review especially focuses on the development of sigma receptor modulators and their application over the years with respect to CNS diseases, neuropathic pain and neurodegenerative pathologies. The literature was sought through Espacenet, Orbit, ISI Web and PubMed databases. Expert opinion: In recent years, considerable progress in the knowledge of the biology and pharmacology of sigma receptors has encouraged research on the potential benefits of sigma modulators in a wide range of pathologies. So far, only few potent agonists and antagonists of sigma receptors are in clinical trial for acute and chronic neurodegenerative diseases (SA4503 and ANAVEX 2-73) or neuropathic pain (E-52862).


Journal of Chromatography A | 2011

Quick development of an analytical enantioselective high performance liquid chromatography separation and preparative scale-up for the flavonoid Naringenin ☆

Raffaella Gaggeri; Daniela Rossi; Simona Collina; Barbara Mannucci; Marcel Baierl; Markus Juza

The HPLC enantioselective separation of (R/S)-Naringenin, a chiral flavonoid found in several fruits juices and well-known for its beneficial health-related properties, including antioxidant, anti-inflammatory, cancer chemopreventive, immunomodulating and antimicrobial activities, has been performed on both analytical and (semi)-preparative scale using an amylose derived Chiralpak AD chiral stationary phase (CSP). A standard screening protocol for cellulose and amylose based CSPs was firstly applied to analytical Chiralcel OD-H and Chiralpak AD-H, as well as to Lux Cellulose-1, Lux Cellulose-2 and Lux Amylose-2 in order to identify the best experimental condition for the subsequent scaling-up. Using Chiralpak AD-H and eluting with pure methanol (without acidic or basic additives) relatively short retention times, high enantioselectivity and good resolution (α=1.49, R(s)=3.48) were observed. Therefore, these experimental conditions were properly scaled-up to (semi)-preparative scale using both a pre-packed Regispack column and a Chiralpak AD column packed in house with bulk CSP. The developed preparative method proved to be superior to previously published methods in terms of elution times, separation and resolution and is suitable for obtaining a quick access to the desired enantiomers with high enantiomeric excess and amounts sufficient for biological investigations. Future scale-up options (enantioselective supercritical fluid chromatography or HPLC in the Simulated Moving Bed mode) were also evaluated. It could be shown that both methodologies have a high potential for future production of Naringenin enantiomers by enantioselective chromatography.


Bioorganic & Medicinal Chemistry | 2011

Identification of a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells

Daniela Rossi; Alice Pedrali; Mariangela Urbano; Raffaella Gaggeri; Massimo Serra; Leyden Fernández; Michael Fernández; Julio Caballero; Simone Ronsisvalle; Orazio Prezzavento; Dirk Schepmann; Bernhard Wuensch; Marco Peviani; Daniela Curti; Ornella Azzolina; Simona Collina

Herein we report the synthesis, drug-likeness evaluation, and in vitro studies of new sigma (σ) ligands based on arylalkenylaminic scaffold. For the most active olefin the corresponding arylalkylamine was studied. Novel arylalkenylamines generally possess high σ(1) receptor affinity (K(i) values <25 nM) and good σ(1)/σ(2) selectivity (K(i)σ(2) >100). Particularly, the piperidine derivative (E)-17 and its arylalkylamine analog (R,S)-33 were observed to be excellent σ(1) receptor ligands (K(i)=0.70 and 0.86 nM, respectively) and to display significantly high selectivity over σ(2), μ-, and κ-opioid receptors and phencyclidine (PCP) binding site of the N-methyl-d-aspartate (NMDA) receptors. Moreover in PC12 cells (R,S)-33 promoted the nerve growth factor (NGF)-induced neurite outgrowth and elongation. Co-administration of the selective σ(1) receptor antagonist BD-1063 totally counteracted this effect, confirming that σ(1) receptors are involved in the (R,S)-33 modulation of the NGF effect in PC12 cells and suggesting a σ(1) agonist profile. As a part of our work, a threedimensional σ(1) pharmacophore model was also developed employing GALAHAD methodology. Only active compounds were used for deriving this model. The model included two hydrophobes and a positive nitrogen as relevant features and it was able to discriminate between molecules with and without affinity toward σ(1) receptor subtype.


Bioorganic & Medicinal Chemistry | 2002

Novel Potent 5-HT3 Receptor Ligands Based on the Pyrrolidone Structure: Synthesis, Biological Evaluation, and Computational Rationalization of the Ligand–Receptor Interaction Modalities

Andrea Cappelli; Maurizio Anzini; Salvatore Vomero; Laura Mennuni; Francesco Makovec; Edith Doucet; Michel Hamon; M. Cristina Menziani; Pier G. De Benedetti; Gianluca Giorgi; Carla Ghelardini; Simona Collina

Novel conformationally constrained derivatives of classical 5-HT(3) receptor antagonists were designed and synthesized with the aim of probing the central 5-HT(3) receptor recognition site in a systematic way. The newly-synthesized compounds were tested for their potential ability to inhibit [(3)H]granisetron specific binding to 5-HT(3) receptor in rat cortical membranes. These studies revealed subnanomolar affinity in some of the compounds under study. The most potent ligand in this series was found to be quinuclidine derivative (S)-7i, which showed an affinity comparable with that of the reference ligand granisetron. The potential 5-HT(3) agonist/antagonist activity of some selected compounds was assessed in vitro on the 5-HT(3) receptor-dependent [(14)C]guanidinium uptake in NG 108-15 cells. Both of the tropane derivatives tested in this functional assay (7a and 9a) showed antagonist properties, while the quinuclidine derivatives studied [the enantiomers of compounds 7i, 8g, and 9g, and compound (R)-8h] showed a full range of intrinsic efficacies. Therefore, the functional behavior of these 5-HT(3) receptor ligands appears to be affected by the structural features of both the azabicyclo moiety and the heteroaromatic portion. In agreement with the data obtained on NG 108-15 cells, investigations on the 5-HT(3) receptor-dependent Bezold-Jarisch reflex in urethane-anaesthetized rats confirmed the 5-HT(3) receptor antagonist properties of compounds 7a and (S)-7i showing for these compounds ID(50) values of 2.8 and 181 microg/kg, respectively. Finally, compounds 7a, (S)-7i and 9a (at the doses of 0.01, 1.0, and 0.01 mg/kg ip, respectively) prevented scopolamine-induced amnesia in the mouse passive avoidance test suggestive of a potential usefulness in cognitive disorders for these compounds. Qualitative and quantitative structure-affinity relationship studies were carried out by means of theoretical descriptors derived on a single structure and ad-hoc defined size and shape descriptors (indirect approach). The results showed to be useful in capturing information relevant to ligand-receptor interaction. Additional information derived by the analysis of the energy minimized 3-D structures of the ligand-receptor complexes (direct approach) suggested interesting mechanistic and methodological considerations on the binding mode multiplicity at the 5-HT(3) receptors and on the degree of tolerance allowed in the alignment of molecules for the indirect approach, respectively.


ChemMedChem | 2013

Chemical, Pharmacological, and in vitro Metabolic Stability Studies on Enantiomerically Pure RC‐33 Compounds: Promising Neuroprotective Agents Acting as σ1 Receptor Agonists

Daniela Rossi; Alice Pedrali; Raffaella Gaggeri; Annamaria Marra; Luca Pignataro; Erik Laurini; Valentina Dal Col; Maurizio Fermeglia; Sabrina Pricl; Dirk Schepmann; Bernhard Wünsch; Marco Peviani; Daniela Curti; Simona Collina

Our recent research efforts identified racemic RC‐33 as a potent and metabolically stable σ1 receptor agonist. Herein we describe the isolation of pure RC‐33 enantiomers by chiral chromatography, assignment of their absolute configuration, and in vitro biological studies in order to address the role of chirality in the biological activity of these compounds and their metabolic processing. The binding of enantiopure RC‐33 to the σ1 receptor was also investigated in silico by molecular dynamics simulations. Both RC‐33 enantiomers showed similar affinities for the σ1 receptor and appeared to be almost equally effective as σ1 receptor agonists. However, the R‐configured enantiomer showed higher in vitro hepatic metabolic stability in the presence of NADPH than the S enantiomer. Overall, the results presented herein led us to select (R)‐RC‐33 as the optimal candidate for further in vivo studies in an animal model of amyotrophic lateral sclerosis.


Bioorganic & Medicinal Chemistry | 2013

Identification of RC-33 as a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Part 2: g-scale synthesis, physicochemical characterization and in vitro metabolic stability.

Daniela Rossi; Annamaria Marra; Pietro Picconi; Massimo Serra; Laura Catenacci; Milena Sorrenti; Erik Laurini; Maurizio Fermeglia; Sabrina Pricl; Stefania Brambilla; Nicoletta Almirante; Marco Peviani; Daniela Curti; Simona Collina

Strong pharmacological evidences indicate that σ1 receptors are implicated in the pathophysiology of all major CNS disorders. In the last years our research group has conducted extensive studies aimed at discovering novel σ1 ligands and we recently selected (R/S)-RC-33 as a novel potent and selective σ1 receptor agonist. As continuation of our work in this field, here we report our efforts in the development of this new σ1 receptor agonist. Initially, we investigated the binding of (R) and (S) enantiomers of RC-33 to the σ1 receptor by in silico experiments. The close values of the predicted affinity of (R)-RC-33 and (S)-RC-33 for the protein evidenced the non-stereoselective binding of RC-33 to the σ1 receptor; this, in turn, supported further development and characterization of RC-33 in its racemic form. Subsequently, we set-up a scaled-up, optimized synthesis of (R/S)-RC-33 along with some compound characterization data (e.g., solubility in different media and solid state characterization by thermal analysis techniques). Finally, metabolic studies of RC-33 in different biological matrices (e.g., plasma, blood, and hepatic S9 fraction) of different species (e.g., rat, mouse, dog, and human) were performed. (R/S)-RC-33 is generally stable in all examined biological matrices, with the only exception of rat and human liver S9 fractions in the presence of NADPH. In such conditions, the compound is subjected to a relevant oxidative metabolism, with a degradation of approximately 65% in rat and 69% in human. Taken together, our results demonstrated that (R/S)-RC-33 is a highly potent, selective, metabolically stable σ1 agonist, a promising novel neuroprotective drug candidate.


Fitoterapia | 2012

Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima.

Ghias Uddin; Abdur Rauf; Abdulaziz Al-Othman; Simona Collina; Muhammad Arfan; Gowhar Ali; Inamullah Khan

Pistacia integerrima Stewart in traditionally used as folk remedy for various pathological conditions including diabetes. In order to identify the bioactive compound responsible for its folk use in diabetes, a phytochemical and biological study was conducted. Pistagremic acid (PA) was isolated from the dried galls extract of P. integerrima. Strong α-glucosidase inhibitory potential of PA was predicted using its molecular docking simulations against yeast α-glucosidase as a therapeutic target. Significant experimental α-glucosidase inhibitory activity of PA confirmed the computational predictions. PA showed potent enzyme inhibitory activity both against yeast (IC(50): 89.12±0.12μM) and rat intestinal (IC(50): 62.47±0.09μM) α-glucosidases. Interestingly, acarbose was found to be more than 12 times more potent an inhibitor against mammalian (rat intestinal) enzyme (having IC(50) value 62.47±0.09μM), as compared to the microbial (yeast) enzyme (with IC(50) value 780.21μM). Molecular binding mode was explored via molecular docking simulations, which revealed hydrogen bonding interactions between PA and important amino acid residues (Asp60, Arg69 and Asp 70 (3.11Å)), surrounding the catalytic site of the α-glucosidase. These interactions could be mainly responsible for their role in potent inhibitory activity of PA. PA has a strong potential to be further investigated as a new lead compound for better management of diabetes.


European Journal of Medicinal Chemistry | 2009

Substituted benzo[d]oxazol-2(3H)-one derivatives with preference for the σ1 binding site

Daniele Zampieri; Maria Grazia Mamolo; Erik Laurini; Caterina Zanette; Chiara Florio; Simona Collina; Daniela Rossi; Ornella Azzolina; Luciano Vio

We describe here the synthesis and the binding interaction with sigma(1) and sigma(2) receptors of a series of new benzo[d]oxazol-2(3H)-one derivatives variously substituted on the N-benzyl moiety. The results of binding studies confirm the notion that the benzoxazolone moiety confers preference towards sigma(1) sites and establish that the ability to bind to sigma(1), but not to sigma(2) receptors, is strongly affected by the kind and the position of the substituents introduced in the N-benzyl ring. In fact, compounds with substitutions in para-position with atoms of Cl, H or F or with a CH(3) group exhibit a higher affinity for sigma(1) receptors than the corresponding ortho-substituted compounds. The highest affinity and selectivity, with K(i) values of 0.1 and 427 nM for sigma(1) and sigma(2) receptors, respectively, and a corresponding K(i)sigma(2)/K(i)sigma(1) selectivity ratio of 4270 were found for the Cl-substituted compound. These results indicate that benzo[d]oxazol-2(3H)-one derivatives are among the most selective and sigma(1) receptor-preferring ligands currently available.


Bioorganic & Medicinal Chemistry | 2007

Design, synthesis and SAR analysis of novel selective σ1 ligands (Part 2)

Daniela Rossi; Mariangela Urbano; Alice Pedrali; Massimo Serra; Daniele Zampieri; Maria Grazia Mamolo; Christian Laggner; Caterina Zanette; Chiara Florio; Dirk Schepmann; Bernard Wuensch; Ornella Azzolina; Simona Collina

In order to investigate the molecular features involved in sigma receptors (sigma-Rs) binding, new compounds based on arylalkylaminoalcoholic, arylalkenyl- and arylalkylaminic scaffolds were synthesized and their affinity towards sigma(1)- and sigma(2)-Rs subtypes was evaluated. The most promising compounds were also screened for their affinity at micro-opioid, delta-opioid and kappa-opioid receptors. Biological results are herein presented and discussed.

Collaboration


Dive into the Simona Collina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge