Simona Cotesta
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simona Cotesta.
Cell Host & Microbe | 2012
Dominic Hoepfner; Case W. McNamara; Chek Shik Lim; Christian Studer; Ralph Riedl; Thomas Aust; Susan McCormack; David Plouffe; Stephan Meister; Sven Schuierer; Uwe Plikat; Nicole Hartmann; Frank Staedtler; Simona Cotesta; Esther K. Schmitt; Frank Petersen; Frantisek Supek; Richard Glynne; John A. Tallarico; Jeffrey A. Porter; Mark C. Fishman; Christophe Bodenreider; Thierry T. Diagana; N. Rao Movva; Elizabeth A. Winzeler
Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.
Nature Chemical Biology | 2010
Wolfgang Jahnke; Jean-Michel Rondeau; Simona Cotesta; Andreas Marzinzik; Xavier Francois Andre Pelle; Martin Geiser; André Strauss; Marjo Götte; Francis Bitsch; René Hemmig; Chrystèle Henry; Sylvie Lehmann; J. Fraser Glickman; Thomas P. Roddy; Steven Stout; Jonathan Green
Bisphosphonates are potent inhibitors of farnesyl pyrophosphate synthase (FPPS) and are highly efficacious in the treatment of bone diseases such as osteoporosis, Pagets disease and tumor-induced osteolysis. In addition, the potential for direct antitumor effects has been postulated on the basis of in vitro and in vivo studies and has recently been demonstrated clinically in early breast cancer patients treated with the potent bisphosphonate zoledronic acid. However, the high affinity of bisphosphonates for bone mineral seems suboptimal for the direct treatment of soft-tissue tumors. Here we report the discovery of the first potent non-bisphosphonate FPPS inhibitors. These new inhibitors bind to a previously unknown allosteric site on FPPS, which was identified by fragment-based approaches using NMR and X-ray crystallography. This allosteric and druggable pocket allows the development of a new generation of FPPS inhibitors that are optimized for direct antitumor effects in soft tissue.
Journal of the American Chemical Society | 2010
Wolfgang Jahnke; Robert Martin Grotzfeld; Xavier Francois Andre Pelle; André Strauss; Gabriele Fendrich; Sandra W. Cowan-Jacob; Simona Cotesta; Doriano Fabbro; Pascal Furet; Jürgen Mestan; Andreas Marzinzik
Allosteric inhibitors of Bcr-Abl have emerged as a novel therapeutic option for the treatment of CML. Using fragment-based screening, a search for novel Abl inhibitors that bind to the myristate pocket was carried out. Here we show that not all myristate ligands are functional inhibitors, but that the conformational state of C-terminal helix_I is a structural determinant for functional activity. We present an NMR-based conformational assay to monitor the conformation of this crucial helix_I and show that myristate ligands that bend helix_I are functional antagonists, whereas ligands that bind to the myristate pocket but do not induce this conformational change are kinase agonists. Activation of c-Abl by allosteric agonists has been confirmed in a biochemical assay.
Journal of Medicinal Chemistry | 2013
Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Markus Fendt; Christine E. Gee; Laura H. Jacobson; Grit Laue; Silvio Ofner; Vinod Chaudhari; Sangamesh Badiger; Chetan Pandit; Juergen Wagner; Daniel Hoyer
Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, 1 (SB-649868), or suvorexant have shown promise for the treatment of insomnias and sleep disorders in several recent clinical trials in volunteers and primary insomnia patients. The relative contribution of antagonism of OX1R and OX2R for sleep induction is still a matter of debate. We therefore initiated a drug discovery project with the aim of creating both OX2R selective antagonists and DORAs. Here we report that the OX2R selective antagonist 26 induced sleep in mice primarily by increasing NREM sleep, whereas the DORA suvorexant induced sleep largely by increasing REM sleep. Thus, OX2R selective antagonists may also be beneficial for the treatment of insomnia.
Frontiers in Neuroscience | 2013
Daniel Hoyer; Thomas Dürst; Markus Fendt; Laura H. Jacobson; Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Grit Laue; Silvio Ofner; Eric Legangneux; Christine E. Gee
Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be seen.
Antimicrobial Agents and Chemotherapy | 2013
Daryl L. Richie; Katherine Thompson; Christian Studer; Vivian Prindle; Thomas Aust; Ralph Riedl; David Estoppey; Jianshi Tao; Jessica A. Sexton; Thomas Zabawa; Joseph Drumm; Simona Cotesta; Jürg Eichenberger; Sven Schuierer; Nicole Hartmann; N. Rao Movva; John A. Tallarico; Neil S. Ryder; Dominic Hoepfner
ABSTRACT High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo.
Frontiers in Neuroscience | 2013
Gabrielle E. Callander; Morenike Olorunda; Dominique Monna; Edi Schuepbach; Daniel Langenegger; Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Markus Fendt; Grit Laue; Silvio Ofner; Emmanuelle Briard; Christine E. Gee; Laura H. Jacobson; Daniel Hoyer
Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various “dual” orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S)-N-([1,1′-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the “dual” antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the “dual” antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.
ChemMedChem | 2015
Andreas Marzinzik; R. Amstutz; Guido Bold; Emmanuelle Bourgier; Simona Cotesta; J.F. Glickman; M. Gotte; Chrystelle Henry; Sylvie Lehmann; J.C. Hartwieg; Silvio Ofner; Xavier Francois Andre Pelle; T.P. Roddy; J.M. Rondeau; Frédéric Stauffer; S.J. Stout; A. Widmer; J. Zimmermann; T. Zoller; Wolfgang Jahnke
Farnesyl pyrophosphate synthase (FPPS) is an established target for the treatment of bone diseases, but also shows promise as an anticancer and anti‐infective drug target. Currently available anti‐FPPS drugs are active‐site‐directed bisphosphonate inhibitors, the peculiar pharmacological profile of which is inadequate for therapeutic indications beyond bone diseases. The recent discovery of an allosteric binding site has paved the way toward the development of novel non‐bisphosphonate FPPS inhibitors with broader therapeutic potential, notably as immunomodulators in oncology. Herein we report the discovery, by an integrated lead finding approach, of two new chemical classes of allosteric FPPS inhibitors that belong to the salicylic acid and quinoline chemotypes. We present their synthesis, biochemical and cellular activities, structure–activity relationships, and provide X‐ray structures of several representative FPPS complexes. These novel allosteric FPPS inhibitors are devoid of any affinity for bone mineral and could serve as leads to evaluate their potential in none‐bone diseases.
Angewandte Chemie | 2015
Wolfgang Jahnke; Guido Bold; Andreas Marzinzik; Silvio Ofner; Xavier Francois Andre Pelle; Simona Cotesta; Emmanuelle Bourgier; Sylvie Lehmann; Chrystelle Henry; René Hemmig; Frédéric Stauffer; J. Constanze D. Hartwieg; Jonathan Green; Jean-Michel Rondeau
Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs.
PLOS Genetics | 2016
Ireos Filipuzzi; Simona Cotesta; Francesca Perruccio; Britta Knapp; Yue Fu; Christian Studer; Verena Pries; Ralph Riedl; Stephen B. Helliwell; Katarina Petrovic; N. Rao Movva; Dominique Sanglard; Jianshi Tao; Dominic Hoepfner
Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.