Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Di Lascio is active.

Publication


Featured researches published by Simona Di Lascio.


Journal of Biological Chemistry | 2007

Transcription Factor PHOX2A Regulates the Human α3 Nicotinic Receptor Subunit Gene Promoter

Roberta Benfante; Adriano Flora; Simona Di Lascio; Francesca Cargnin; Renato Longhi; Sara Francesca Colombo; Francesco Clementi; Diego Fornasari

PHOX2A is a paired-like homeodomain transcription factor that participates in specifying the autonomic nervous system. It is also involved in the transcriptional control of the noradrenergic neurotransmitter phenotype as it regulates the gene expression of tyrosine hydroxylase and dopamine-β-hydroxylase. The results of this study show that the human orthologue of PHOX2A is also capable of regulating the transcription of the human α3 nicotinic acetylcholine receptor gene, which encodes the ligand-binding subunit of the ganglionic type nicotinic receptor. In particular, we demonstrated by chromatin immunoprecipitation and DNA pulldown assays that PHOX2A assembles on the SacI-NcoI region of α3 promoter and, by co-transfection experiments, that it exerts its transcriptional effects by acting through the 60-bp minimal promoter. PHOX2A does not seem to bind to DNA directly, and its DNA binding domain seems to be partially dispensable for the regulation of α3 gene transcription. However, as suggested by the findings of our co-immunoprecipitation assays, it may establish direct or indirect protein-protein interactions with Sp1, thus regulating the expression of α3 through a DNA-independent mechanism. As the α3 subunit is expressed in every terminally differentiated ganglionic cell, this is the first example of a “pan-autonomic” gene whose expression is regulated by PHOX2 proteins.


Journal of Biological Chemistry | 2005

PHOX2B regulates its own expression by a transcriptional auto-regulatory mechanism.

Francesca Cargnin; Adriano Flora; Simona Di Lascio; Elena Battaglioli; Renato Longhi; Francesco Clementi; Diego Fornasari

The specification of neuronal identity is a result of interactions between the following two distinct classes of determinants: extrinsic factors that include secreted or cell membrane-associated signals in the local environment, and intrinsic factors that generally consist of ordered cascades of transcription factors. Little is known about the molecular mechanisms underlying the interplay between these extrinsic and intrinsic factors and the transcriptional processes that establish and maintain a given neuronal phenotype. Phox2b is a vertebrate homeodomain transcription factor and a well established intrinsic factor in developing autonomic ganglia, where its expression is triggered by the bone morphogenic proteins secreted by the dorsal aorta. In this study we characterized its proximal 5′-regulatory region and found that it contained five putative DNA sites that potentially bind homeodomain proteins, including PHOX2B itself. Chromatin immunoprecipitation assays showed that PHOX2B could bind its own promoter in vivo, and electromobility gel shift assays confirmed that four of the five sites could be involved in PHOX2B binding. Functional experiments demonstrated that 65% of the transcriptional activity of the PHOX2B promoter in neuroblastoma cells depends on this auto-regulatory mechanism and that all four sites were required for full self-transactivation. Our data provide a possible molecular explanation for the maintenance of PHOX2B expression in developing ganglia, in which initially its expression is triggered by bone morphogenic proteins, but may become independent of external stimuli when it reaches a certain nuclear concentration and sustains its own transcription.


PLOS ONE | 2010

PHOX2B-mediated regulation of ALK expression: In vitro identification of a functional relationship between two genes involved in neuroblastoma

Tiziana Bachetti; Daniela Di Paolo; Simona Di Lascio; Valentina Mirisola; Chiara Brignole; Marta Bellotti; Irene Caffa; Chiara Ferraris; Michele Fiore; Diego Fornasari; Roberto Chiarle; Silvia Borghini; Ulrich Pfeffer; Mirco Ponzoni; Isabella Ceccherini; Patrizia Perri

Background Neuroblastoma (NB) is a severe pediatric tumor originating from neural crest derivatives and accounting for 15% of childhood cancer mortality. The heterogeneous and complex genetic etiology has been confirmed with the identification of mutations in two genes, encoding for the receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) and the transcription factor Paired-like Homeobox 2B (PHOX2B), in a limited proportion of NB patients. Interestingly, these two genes are overexpressed in the great majority of primary NB samples and cell lines. These observations led us to test the hypothesis of a regulatory or functional relationship between ALK and PHOX2B underlying NB pathogenesis. Methodology/Principal Findings Following this possibility, we first confirmed a striking correlation between the transcription levels of ALK, PHOX2B and its direct target PHOX2A in a panel of NB cell lines. Then, we manipulated their expression in NB cell lines by siRNA-mediated knock-down and forced over-expression of each gene under analysis. Surprisingly, PHOX2B- and PHOX2A-directed siRNAs efficiently downregulated each other as well as ALK gene and, consistently, the enhanced expression of PHOX2B in NB cells yielded an increment of ALK protein. We finally demonstrated that PHOX2B drives ALK gene transcription by directly binding its promoter, which therefore represents a novel PHOX2B target. Conclusions/Significance These findings provide a compelling explanation of the concurrent involvement of these two genes in NB pathogenesis and are going to foster a better understanding of molecular interactions at the base of the disease. Moreover, this work opens new perspectives for NBs refractory to conventional therapies that may benefit from the design of novel therapeutic RNAi-based approaches for multiple gene targets.


Neurobiology of Disease | 2013

Transcriptional dysregulation and impairment of PHOX2B auto-regulatory mechanism induced by polyalanine expansion mutations associated with congenital central hypoventilation syndrome.

Simona Di Lascio; Tiziana Bachetti; Elena Saba; Isabella Ceccherini; Roberta Benfante; Diego Fornasari

The PHOX2B transcription factor plays a crucial role in autonomic nervous system development. In humans, heterozygous mutations of the PHOX2B gene lead to congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by a broad variety of symptoms of autonomic nervous system dysfunction including inadequate control of breathing. The vast majority of patients with CCHS are heterozygous for a polyalanine repeat expansion mutation involving a polyalanine tract of twenty residues in the C-terminus of PHOX2B. Although several lines of evidence support a dominant-negative mechanism for PHOX2B mutations in CCHS, the molecular effects of PHOX2B mutant proteins on the transcriptional activity of the wild-type protein have not yet been elucidated. As one of the targets of PHOX2B is the PHOX2B gene itself, we tested the transcriptional activity of wild-type and mutant proteins on the PHOX2B gene promoter, and found that the transactivation ability of proteins with polyalanine expansions decreased as a function of the length of the expansion, whereas DNA binding was severely affected only in the case of the mutant with the longest polyalanine tract (+13 alanine). Co-transfection experiments using equimolar amounts of PHOX2B wild-type and mutant proteins in order to simulate a heterozygous state in vitro and four different PHOX2B target gene regulatory regions (PHOX2B, PHOX2A, DBH, TLX2) clearly showed that the polyalanine expanded proteins alter the transcriptional activity of wild-type protein in a promoter-specific manner, without any clear correlation with the length of the expansion. Moreover, although reduced transactivation may be caused by retention of the wild-type protein in the cytoplasm or in nuclear aggregates, this mechanism can only be partially responsible for the pathogenesis of CCHS because of the reduction in cytoplasmic and nuclear accumulation when the +13 alanine mutant is co-expressed with wild-type protein, and the fact that the shortest polyalanine expansions do not form visible cytoplasmic aggregates. Deletion of the C-terminal of PHOX2B leads to a protein that correctly localizes in the nucleus but impairs PHOX2B wild-type transcriptional activity, thus suggesting that protein mislocalization is not the only mechanism leading to CCHS. The results of this study provide novel in vitro experimental evidence of a transcriptional dominant-negative effect of PHOX2B polyalanine mutant proteins on wild-type protein on two different PHOX2B target genes.


Journal of Biological Chemistry | 2016

Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import

Simona Di Lascio; Debora Belperio; Roberta Benfante; Diego Fornasari

Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity.


Journal of Molecular Medicine | 2012

The E3 ubiquitin ligase TRIM11 mediates the degradation of congenital central hypoventilation syndrome-associated polyalanine-expanded PHOX2B

Sara Parodi; Eleonora Di Zanni; Simona Di Lascio; Paola Bocca; Ignazia Prigione; Diego Fornasari; Maria Pennuto; Tiziana Bachetti; Isabella Ceccherini

Expansions of a polyalanine (polyA) stretch in the coding region of the PHOX2B gene cause congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by the absence of adequate control of autonomic breathing. Expansion of polyA in PHOX2B leads to protein misfolding and accumulation into inclusions. The mechanisms that regulate mutant protein degradation and turnover have been poorly elucidated. Here, we investigate the regulation of degradation of wild-type and polyA-expanded PHOX2B. We show that expanded PHOX2B is targeted for degradation through the ubiquitin–proteasome system, resulting in lowered levels of the mutant protein relative to its wild-type counterpart. Moreover, we show that mutant PHOX2B forms ubiquitin-positive inclusions, which sequester wild-type PHOX2B. This sequestration correlates with reduced transcriptional activity of endogenous wild-type protein in neuroblastoma cells. Finally, we show that the E3 ubiquitin ligase TRIM11 plays a critical role in the clearance of mutant PHOX2B through the proteasome. Importantly, clearance of mutant PHOX2B by TRIM11 correlates with a rescue of PHOX2B transcriptional activity. We propose that CCHS is partially caused by a dominant-negative effect of expanded PHOX2B due to the retention of the wild-type protein in pathogenic aggregates. Our results demonstrate that TRIM11 is a novel modifier of mutant PHOX2B toxicity and represents a potential therapeutic target for CCHS.


Orphanet Journal of Rare Diseases | 2013

Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva

Francesca Giacopelli; Serena Cappato; Laura Tonachini; Marzia Mura; Simona Di Lascio; Diego Fornasari; Roberto Ravazzolo; Renata Bocciardi

BackgroundThe ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription.Methods and resultsWe first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor.ConclusionsOur results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments.


Human Mutation | 2018

Structural and functional differences in phox2b frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome

Simona Di Lascio; Roberta Benfante; Eleonora Di Zanni; Silvia Cardani; Diego Fornasari; Isabella Ceccherini; Tiziana Bachetti

Heterozygous mutations in the PHOX2B gene are causative of congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by defective autonomic control of breathing due to the impaired differentiation of neural crest cells. Among PHOX2B mutations, polyalanine (polyAla) expansions are almost exclusively associated with isolated CCHS, whereas frameshift variants, although less frequent, are often more severe than polyAla expansions and identified in syndromic CCHS. This article provides a complete review of all the frameshift mutations identified in cases of isolated and syndromic CCHS reported in the literature as well as those identified by us and not yet published. These were considered in terms of both their structure, whether the underlying indels induced frameshifts of either 1 or 2 steps (“frame 2” and “frame 3” mutations respectively), and clinical associations. Furthermore, we evaluated the structural and functional effects of one “frame 3” mutation identified in a patient with isolated CCHS, and one “frame 2” mutation identified in a patient with syndromic CCHS, also affected with Hirschsprungs disease and neuroblastoma. The data thus obtained confirm that the type of translational frame affects the severity of the transcriptional dysfunction and the predisposition to isolated or syndromic CCHS.


British Journal of Pharmacology | 2018

α9‐ and α7‐containing receptors mediate the pro‐proliferative effects of nicotine in the A549 adenocarcinoma cell line

Vanessa Mucchietto; Francesca Fasoli; Susanna Pucci; Milena Moretti; Roberta Benfante; Annalisa Maroli; Simona Di Lascio; Cristiano Bolchi; Marco Pallavicini; Cheryl Dowell; Michael McIntosh; Francesco Clementi; Cecilia Gotti

Tobacco smoke contains many classes of carcinogens and although nicotine is unable to initiate tumourigenesis in humans and rodents, it promotes tumour growth and metastasis in lung tumours by acting on neuronal nicotinic ACh receptors (nAChRs). The aim of this study was to identify molecularly, biochemically and pharmacologically which nAChR subtypes are expressed and functionally activated by nicotine in lung cancer cell lines.


Experimental Cell Research | 2016

PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line

Simona Di Lascio; Elena Saba; Debora Belperio; Andrea Raimondi; Helen Lucchetti; Diego Fornasari; Roberta Benfante

PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making.

Collaboration


Dive into the Simona Di Lascio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge