Simona Fornarino
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simona Fornarino.
Science | 2006
Anna Olivieri; Alessandro Achilli; Maria Pala; Vincenza Battaglia; Simona Fornarino; Nadia Al-Zahery; Rosaria Scozzari; Fulvio Cruciani; Doron M. Behar; Jean-Michel Dugoujon; Clotilde Coudray; A. Silvana Santachiara-Benerecetti; Ornella Semino; Hans-Jürgen Bandelt; Antonio Torroni
Sequencing of 81 entire human mitochondrial DNAs (mtDNAs) belonging to haplogroups M1 and U6 reveals that these predominantly North African clades arose in southwestern Asia and moved together to Africa about 40,000 to 45,000 years ago. Their arrival temporally overlaps with the event(s) that led to the peopling of Europe by modern humans and was most likely the result of the same change in climate conditions that allowed humans to enter the Levant, opening the way to the colonization of both Europe and North Africa. Thus, the early Upper Palaeolithic population(s) carrying M1 and U6 did not return to Africa along the southern coastal route of the “out of Africa” exit, but from the Mediterranean area; and the North African Dabban and European Aurignacian industries derived from a common Levantine source.
Current Biology | 2008
Alessandro Achilli; Anna Olivieri; Marco Pellecchia; Cristina Uboldi; Licia Colli; Nadia Al-Zahery; Matteo Accetturo; Maria Pala; Baharak Hooshiar Kashani; Ugo A. Perego; Vincenza Battaglia; Simona Fornarino; Javad Kalamati; Massoud Houshmand; Riccardo Negrini; Ornella Semino; Martin B. Richards; Vincent Macaulay; L. Ferretti; Hans-Jürgen Bandelt; Paolo Ajmone-Marsan; Antonio Torroni
Archaeological and genetic evidence suggest that modern cattle might result from two domestication events of aurochs (Bos primigenius) in southwest Asia, which gave rise to taurine (Bos taurus) and zebuine (Bos indicus) cattle, respectively [1,2,3]. However, independent domestication in Africa [4,5] and East Asia [6] has also been postulated and ancient DNA data raise the possibility of local introgression from wild aurochs [7,8,9]. Here, we show by sequencing entire mitochondrial genomes from modern cattle that extinct wild aurochsen from Europe occasionally transmitted their mitochondrial DNA (mtDNA) to domesticated taurine breeds. However, the vast majority of mtDNAs belong either to haplogroup I (B. indicus) or T (B. taurus). The sequence divergence within haplogroup T is extremely low (eight-fold less than in the human mtDNA phylogeny [10]), indicating a narrow bottleneck in the recent evolutionary history of B. taurus. MtDNAs of haplotype T fall into subclades whose ages support a single Neolithic domestication event for B. taurus in the Near East, 911 thousand years ago (kya).
European Journal of Human Genetics | 2009
Vincenza Battaglia; Simona Fornarino; Nadia Al-Zahery; Anna Olivieri; Maria Pala; Natalie M. Myres; Roy King; Siiri Rootsi; Damir Marjanović; Dragan Primorac; Rifat Hadziselimovic; Stojko Vidović; Katia Drobnic; Naser Durmishi; Antonio Torroni; A. Silvana Santachiara-Benerecetti; Peter A. Underhill; Ornella Semino
The debate concerning the mechanisms underlying the prehistoric spread of farming to Southeast Europe is framed around the opposing roles of population movement and cultural diffusion. To investigate the possible involvement of local people during the transition of agriculture in the Balkans, we analysed patterns of Y-chromosome diversity in 1206 subjects from 17 population samples, mainly from Southeast Europe. Evidence from three Y-chromosome lineages, I-M423, E-V13 and J-M241, make it possible to distinguish between Holocene Mesolithic forager and subsequent Neolithic range expansions from the eastern Sahara and the Near East, respectively. In particular, whereas the Balkan microsatellite variation associated to J-M241 correlates with the Neolithic period, those related to E-V13 and I-M423 Balkan Y chromosomes are consistent with a late Mesolithic time frame. In addition, the low frequency and variance associated to I-M423 and E-V13 in Anatolia and the Middle East, support an European Mesolithic origin of these two clades. Thus, these Balkan Mesolithic foragers with their own autochthonous genetic signatures, were destined to become the earliest to adopt farming, when it was subsequently introduced by a cadre of migrating farmers from the Near East. These initial local converted farmers became the principal agents spreading this economy using maritime leapfrog colonization strategies in the Adriatic and transmitting the Neolithic cultural package to other adjacent Mesolithic populations. The ensuing range expansions of E-V13 and I-M423 parallel in space and time the diffusion of Neolithic Impressed Ware, thereby supporting a case of cultural diffusion using genetic evidence.
American Journal of Human Genetics | 2007
Alessandro Achilli; Anna Olivieri; Maria Pala; Ene Metspalu; Simona Fornarino; Vincenza Battaglia; Matteo Accetturo; Ildus Kutuev; E. K. Khusnutdinova; Erwan Pennarun; Nicoletta Cerutti; Cornelia Di Gaetano; F. Crobu; Domenico Palli; Giuseppe Matullo; A. Silvana Santachiara-Benerecetti; Luigi Luca Cavalli-Sforza; Ornella Semino; Richard Villems; Hans-Jürgen Bandelt; Alberto Piazza; Antonio Torroni
The origin of the Etruscan people has been a source of major controversy for the past 2,500 years, and several hypotheses have been proposed to explain their language and sophisticated culture, including an Aegean/Anatolian origin. To address this issue, we analyzed the mitochondrial DNA (mtDNA) of 322 subjects from three well-defined areas of Tuscany and compared their sequence variation with that of 55 western Eurasian populations. Interpopulation comparisons reveal that the modern population of Murlo, a small town of Etruscan origin, is characterized by an unusually high frequency (17.5%) of Near Eastern mtDNA haplogroups. Each of these haplogroups is represented by different haplotypes, thus dismissing the possibility that the genetic allocation of the Murlo people is due to drift. Other Tuscan populations do not show the same striking feature; however, overall, ~5% of mtDNA haplotypes in Tuscany are shared exclusively between Tuscans and Near Easterners and occupy terminal positions in the phylogeny. These findings support a direct and rather recent genetic input from the Near East--a scenario in agreement with the Lydian origin of Etruscans. Such a genetic contribution has been extensively diluted by admixture, but it appears that there are still locations in Tuscany, such as Murlo, where traces of its arrival are easily detectable.
BMC Evolutionary Biology | 2009
Simona Fornarino; Maria Pala; Vincenza Battaglia; Ramona Maranta; Alessandro Achilli; Guido Modiano; Antonio Torroni; Ornella Semino; Silvana Santachiara-Benerecetti
BackgroundCentral Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures.ResultsHigh-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome.ConclusionAlthough remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population.
Molecular Biology and Evolution | 2011
Simona Fornarino; Guillaume Laval; Luis B. Barreiro; Jérémy Manry; Estelle Vasseur; Lluis Quintana-Murci
Natural selection is expected to act strongly on immune system genes as hosts adapt to novel, diverse, and coevolving pathogens. Population genetic studies of host defense genes with parallel functions in model organisms have revealed distinct evolutionary histories among the different components-receptors, adaptors, and effectors-of the innate immune system. In humans, however, detailed evolutionary studies have been mainly confined to the receptors and in particular to Toll-like receptors (TLRs). By virtue of a toll/interleukin-1 receptor (TIR) domain, TLRs activate distinct signaling pathways, which are mediated by the five TIR-containing adaptors: myeloid differentiation factor-88 (MyD88), myeloid differentiation factor-88 adaptor-like protein (MAL), toll/interleukin-1 receptor domain-containing adaptor protein inducing interferon (IFN)β (TRIF), toll/interleukin-1 receptor domain-containing adaptor protein inducing IFNβ-related adaptor molecule (TRAM), and sterile α- and armadillo motif-containing protein (SARM). Here, we have examined the extent to which natural selection has affected immune adaptors in humans, using as a paradigm the TIR-containing adaptors. To do so, we characterized their levels of naturally occurring genetic variation in various human populations. We found that MyD88 and TRIF have mainly evolved under purifying selection, suggesting that their role in the early stages of signal transduction is essential and nonredundant for host survival. In addition, the adaptors have been targeted by multiple episodes of positive selection, differing in timing and spatial location. MyD88 and SARM display signatures of a selective sweep that has occurred in all humans, whereas for the other three adaptors, we detected signatures of adaptive evolution that are restricted to specific populations. Our study provides evidence that the contemporary diversity of the five TIR-containing adaptors results from the intermingling of different selective events, swinging between constraint and adaptation.
Human Mutation | 2011
Jérémy Manry; Guillaume Laval; Etienne Patin; Simona Fornarino; Magali Tichit; Christiane Bouchier; Luis B. Barreiro; Lluis Quintana-Murci
Identifying how natural selection has affected immunity‐related genes can provide insights into the mechanisms that have been crucial for our survival against infection. Rare disorders of either chain of the IFN‐γ receptor, but not of IFN‐γ itself, have been shown to confer predisposition to mycobacterial disease in patients otherwise normally resistant to most viruses. Here, we defined the levels of naturally occurring variation in the three specific genes controlling the IFN‐γ pathway (IFNG, IFNGR1, IFNGR2) and assessed whether and how natural selection has acted on them. To this end, we resequenced the three genes in 186 individuals from sub‐Saharan Africa, Europe, and East‐Asia. Our results show that IFNG is subject to strong purifying selection against nonsynonymous variants. Conversely, IFNGR1 and IFNGR2 evolve under more relaxed selective constraints, although they are not completely free to accumulate amino acid variation having a major impact on protein function. In addition, we have identified signatures of population‐specific positive selection, including at one intronic variant known to be associated with higher production of IFN‐γ. The integration of our population genetic data into a clinical framework demonstrates that the IFN‐γ pathway is essential and nonredundant in host defense, probably because of its role in protective immunity against mycobacteria. Hum Mutat 32:1–10, 2011.
PLOS ONE | 2013
Sena Karachanak; Viola Grugni; Simona Fornarino; Desislava Nesheva; Nadia Al-Zahery; Vincenza Battaglia; Valeria Carossa; Yordan Yordanov; Antonio Torroni; Angel S. Galabov; Draga Toncheva; Ornella Semino
To better define the structure and origin of the Bulgarian paternal gene pool, we have examined the Y-chromosome variation in 808 Bulgarian males. The analysis was performed by high-resolution genotyping of biallelic markers and by analyzing the STR variation within the most informative haplogroups. We found that the Y-chromosome gene pool in modern Bulgarians is primarily represented by Western Eurasian haplogroups with ∼ 40% belonging to haplogroups E-V13 and I-M423, and 20% to R-M17. Haplogroups common in the Middle East (J and G) and in South Western Asia (R-L23*) occur at frequencies of 19% and 5%, respectively. Haplogroups C, N and Q, distinctive for Altaic and Central Asian Turkic-speaking populations, occur at the negligible frequency of only 1.5%. Principal Component analyses group Bulgarians with European populations, apart from Central Asian Turkic-speaking groups and South Western Asia populations. Within the country, the genetic variation is structured in Western, Central and Eastern Bulgaria indicating that the Balkan Mountains have been permeable to human movements. The lineage analysis provided the following interesting results: (i) R-L23* is present in Eastern Bulgaria since the post glacial period; (ii) haplogroup E-V13 has a Mesolithic age in Bulgaria from where it expanded after the arrival of farming; (iii) haplogroup J-M241 probably reflects the Neolithic westward expansion of farmers from the earliest sites along the Black Sea. On the whole, in light of the most recent historical studies, which indicate a substantial proto-Bulgarian input to the contemporary Bulgarian people, our data suggest that a common paternal ancestry between the proto-Bulgarians and the Altaic and Central Asian Turkic-speaking populations either did not exist or was negligible.
American Journal of Human Genetics | 2005
Alessandro Achilli; Chiara Rengo; Vincenza Battaglia; Maria Pala; Anna Olivieri; Simona Fornarino; Chiara Magri; Rosaria Scozzari; Nora Babudri; A. Silvana Santachiara-Benerecetti; Hans-Jürgen Bandelt; Ornella Semino; Antonio Torroni
Dokladi na B lgarskata akademiâ na naukite | 2009
Sena Karachanak; Simona Fornarino; Viola Grugni; Ornella Semino; Draga Toncheva; Angel S. Galabov; Boris Atanasov