Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Hodis is active.

Publication


Featured researches published by Simona Hodis.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge

David A. Steinman; Yiemeng Hoi; Paul Fahy; Liam Morris; Michael T. Walsh; Nicolas Aristokleous; Andreas S. Anayiotos; Yannis Papaharilaou; Amirhossein Arzani; Shawn C. Shadden; Philipp Berg; Gábor Janiga; Joris Bols; Patrick Segers; Neil W. Bressloff; Merih Cibis; Frank J. H. Gijsen; Salvatore Cito; Jordi Pallares; Leonard D. Browne; Jennifer A. Costelloe; Adrian G. Lynch; Joris Degroote; Jan Vierendeels; Wenyu Fu; Aike Qiao; Simona Hodis; David F. Kallmes; Hardeep S. Kalsi; Quan Long

Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.


Journal of Biomechanics | 2012

Grid convergence errors in hemodynamic solution of patient-specific cerebral aneurysms

Simona Hodis; Susheil Uthamaraj; Andrea L. Smith; Kendall D. Dennis; David F. Kallmes; Dan Dragomir-Daescu

Computational fluid dynamics (CFD) has become a cutting-edge tool for investigating hemodynamic dysfunctions in the body. It has the potential to help physicians quantify in more detail the phenomena difficult to capture with in vivo imaging techniques. CFD simulations in anatomically realistic geometries pose challenges in generating accurate solutions due to the grid distortion that may occur when the grid is aligned with complex geometries. In addition, results obtained with computational methods should be trusted only after the solution has been verified on multiple high-quality grids. The objective of this study was to present a comprehensive solution verification of the intra-aneurysmal flow results obtained on different morphologies of patient-specific cerebral aneurysms. We chose five patient-specific brain aneurysm models with different dome morphologies and estimated the grid convergence errors for each model. The grid convergence errors were estimated with respect to an extrapolated solution based on the Richardson extrapolation method, which accounts for the degree of grid refinement. For four of the five models, calculated velocity, pressure, and wall shear stress values at six different spatial locations converged monotonically, with maximum uncertainty magnitudes ranging from 12% to 16% on the finest grids. Due to the geometric complexity of the fifth model, the grid convergence errors showed oscillatory behavior; therefore, each patient-specific model required its own grid convergence study to establish the accuracy of the analysis.


American Journal of Neuroradiology | 2014

Analysis of hemodynamics and aneurysm occlusion after flow-diverting treatment in rabbit models.

Juan R. Cebral; Fernando Mut; Marcelo Raschi; Simona Hodis; Y. H. Ding; Bradley J. Erickson; Ramanathan Kadirvel; David F. Kallmes

BACKGROUND AND PURPOSE: Predicting the outcome of flow diversion treatment of cerebral aneurysms remains challenging. Our aim was to investigate the relationship between hemodynamic conditions created immediately after flow diversion and subsequent occlusion of experimental aneurysms in rabbits. MATERIALS AND METHODS: The hemodynamic environment before and after flow-diversion treatment of elastase-induced aneurysms in 20 rabbits was modeled by using image-based computational fluid dynamics. Local aneurysm occlusion was quantified by using a voxelization technique on 3D images acquired 8 weeks after treatment. Global and local voxel-by-voxel hemodynamic variables were used to statistically compare aneurysm regions that later thrombosed to regions that remained patent. RESULTS: Six aneurysms remained patent at 8 weeks, while 14 were completely or nearly completely occluded. Patent aneurysms had statistically larger neck sizes (P = .0015) and smaller mean transit times (P = .02). The velocity, vorticity, and shear rate were approximately 2.8 times (P < .0001) larger in patent regions—that is, they had larger “flow activity” than regions that progressed to occlusion. Statistical models based on local hemodynamic variables were capable of predicting local occlusion with good precision (84% accuracy), especially away from the neck (92%–94%). Predictions near the neck were poorer (73% accuracy). CONCLUSIONS: These results suggests that the dominant healing mechanism of occlusion within the aneurysm dome is related to slow-flow-induced thrombosis, while near the neck, other processes could be at play simultaneously.


Case Reports | 2013

Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography

Simona Hodis; Susheil Uthamaraj; Giuseppe Lanzino; David F. Kallmes; Dan Dragomir-Daescu

We present a computational fluid dynamics (CFD) analysis of the hemodynamic environment of an anterior communicating artery that spontaneously ruptured immediately following three-dimensional rotational angiography. Subsequent digital subtraction angiography allowed for the localization of the point of rupture within the aneurysm dome. CFD analysis demonstrated a concentrated jet that impinged directly at the site of rupture. Peak systolic pressure and wall shear stress were both maximal near the rupture location.


Journal of NeuroInterventional Surgery | 2016

Relationship between aneurysm occlusion and flow diverting device oversizing in a rabbit model

Simona Hodis; Yong Hong Ding; Daying Dai; Ravi K. Lingineni; Fernando Mut; Juan R. Cebral; David F. Kallmes; Ramanathan Kadirvel

Background and purpose Implanted, actual flow diverter pore density is thought to be strongly influenced by proper matching between the device size and parent artery diameter. The objective of this study was to characterize the correlation between device sizing, metal coverage, and the resultant occlusion of aneurysms following flow diverter treatment in a rabbit model. Methods Rabbit saccular aneurysms were treated with flow diverters (iso-sized to proximal parent artery, 0.5 mm oversized, or 1.0 mm oversized, respectively, n=6 for each group). Eight weeks after implantation, the angiographic degree of aneurysm occlusion was graded (complete, near-complete, or incomplete). The ostium of the explanted aneurysm covered with the flow diverter struts was photographed. Based on gross anatomic findings, the metal coverage and pore density at the ostium of the aneurysm were calculated and correlated with the degree of aneurysm occlusion. Results Angiographic results showed there were no statistically significant differences in aneurysm geometry and occlusion among groups. The mean parent artery diameter to flow diverter diameter ratio was higher in the 1.0 mm oversized group than in the other groups. Neither the percentage metal coverage nor the pore density showed statistically significant differences among groups. Aneurysm occlusion was inversely correlated with the ostium diameter, irrespective of the size of the device implanted. Conclusions Device sizing alone does not predict resultant pore density or metal coverage following flow diverter implantation in the rabbit aneurysm model. Aneurysm occlusion was not impacted by either metal coverage or pore density, but was inversely correlated with the diameter of the ostium.


International Journal for Numerical Methods in Biomedical Engineering | 2018

Correlation of flow complexity parameter with aneurysm rupture status

Simona Hodis

Ruptured aneurysms are known to have complex flow patterns and concentrated inflow jet, but a quantifiable measure for the degree of flow complexity in patient-specific geometries has not been established. Previously, we proposed a flow complexity parameter that provides a quantitative description of the complexity of flow patterns through calculated curvature and torsion of the flow field. The purpose of the current study was to provide an analytic solution of the flow complexity parameter and assess a possible correlation with the rupture status of cerebral aneurysms by analyzing the parameter on five ruptured and five unruptured aneurysms from anterior communicating artery. We analyzed the flow complexity parameter in jet and non-jet regions in order to measure the concentration of the jet flow and the complexity of the non-jet flow. We found that on average, in a ruptured case the jet region is significantly less complex (4.5 times) than the jet region in an unruptured case, while the non-jet region is significantly more complex (3.5 times) than the non-jet region in an unruptured case. We also found a strong positive correlation of the non-jet complexity with dome volume in ruptured cases, but no correlation of jet complexity with dome volume. These findings suggest that a ruptured aneurysm has more than 4 times more concentrated inflow jet and more than 3 times more complex flow patterns in non-jet region than an unruptured aneurysm. This newly implemented kinematic parameter provides a measurable degree of complexity of flow patterns in cerebral aneurysms that can better assess aneurysm rupture risk.


International Journal for Numerical Methods in Biomedical Engineering | 2014

Analysis of Hemodynamics and Aneurysm Occlusion after Flow Diverting Treatment in Rabbit Models

Juan R. Cebral; Fernando Mut; Marcelo Raschi; Simona Hodis; Y. H. Ding; Bradley J. Erickson; Ramanathan Kadirvel; David F. Kallmes

Understanding the flow alteration in side branches during flow diversion treatment of cerebral aneurysms is important to prevent ischemic complications and improve device designs. Flow diverters were placed in the aorta of four rabbits crossing the origin of side arteries. Subject-specific computational models were constructed from 3D angiographies and Doppler ultrasounds (DUSs). Flow simulations were run before and after virtually deploying the flow diverters, assuming distal resistances remained unchanged after treatment. All jailed arteries remained patent angiographically 8 weeks after treatment. The computational models estimated decreases compared to pretreatment in the mean flow rates between 2% and 20% and in peak flow rates between 5% and 36%. The major changes were observed during systole. Flow patterns did not exhibit recirculation zones before treatment. Implantation of the flow diverters altered the flow structure only locally near the device wires. No major recirculation regions were created or destroyed. Flow diverters seem safe with respect to perforator or side branch occlusion. Relatively small changes in flow rates through jailed arteries are expected, even for moderate to large degrees of coverage of their origins. These results seem consistent with previous clinical experiences where no or very few complications related to perforator occlusion have been reported.


Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments | 2013

Intra-Aneurysmal Flow Complexity Quantification Using Flowlines Geometry

Simona Hodis; David F. Kallmes; Dan Dragomir-Daescu

We present a quantified description of the fluid flow and a novel flowline-based meshing technique to create adaptive grids for Computational Fluid Dynamics (CFD) simulations in patient-specific intracranial aneurysms. The adaptive grid density is obtained such that it captures the fine geometrical details of the flow with high grid density, while smoother flow characteristics are calculated with a coarser grid density. The correlation between the topological characteristics of the flow and the element size of the adaptive grid results in a practical mathematical formula for calculating the element size using only one uniform base mesh and a user defined implementation in CFD post processors.Copyright


ASME 2012 Summer Bioengineering Conference, Parts A and B | 2012

CFD Challenge Solution Using the Commercial Finite Volume Solver Fluent

Simona Hodis; David F. Kallmes; Dan Dragomir-Daescu

The Modeling and Analysis group in the Division of Engineering at Mayo Clinic, Rochester works in the area of numerical modeling and experimental validation of cerebral aneurysms. In our modeling we use patient-specific geometries from imaging studies provided by Dr. Kallmes. The CFD analysis is performed with commercial packages Mimics (Materialise, Leuven, Belgium), for segmentation and ANSYS (ANSYS Inc. Canonsburg, PA) for meshing, simulation and post-processing. The experiments are conducted using a tomographic Particle Image Velocimetry system from LaVision Inc. The group is led by Dan Dragomir-Daescu, PhD and David F. Kallmes, MD and consists of two postdoctoral fellows and three engineers. For this project, CFD simulations were performed by postdoctoral fellow Simona Hodis, using the finite volume based solver Fluent.Copyright


Journal of Biomechanical Engineering-transactions of The Asme | 2015

The Computational Fluid Dynamics Rupture Challenge 2013—Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms

Philipp Berg; Christoph Roloff; Oliver Beuing; Samuel Voss; Shin-ichiro Sugiyama; Nicolas Aristokleous; Andreas S. Anayiotos; Neil Ashton; Alistair Revell; Neil W. Bressloff; Alistair G. Brown; Bong Jae Chung; Juan R. Cebral; Gabriele Copelli; Wenyu Fu; Aike Qiao; Arjan J. Geers; Simona Hodis; Dan Dragomir-Daescu; Emily Nordahl; Yildirim B. Suzen; Muhammad Owais Khan; Kristian Valen-Sendstad; Kenichi Kono; Prahlad G. Menon; Priti G. Albal; Otto Mierka; Raphael Münster; Hernán G. Morales; Odile Bonnefous

Collaboration


Dive into the Simona Hodis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Mut

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp Berg

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge