Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone A. Teixeira is active.

Publication


Featured researches published by Simone A. Teixeira.


Hypertension | 2003

ETA Receptor Blockade Decreases Vascular Superoxide Generation in DOCA-Salt Hypertension

Glaucia E. Callera; Rhian M. Touyz; Simone A. Teixeira; Marcelo N. Muscará; Maria Helena C. Carvalho; Zuleica B. Fortes; Dorothy Nigro; Ernesto L. Schiffrin; Rita C. Tostes

Abstract—Development and progression of end-organ damage in hypertension have been associated with increased oxidative stress. Superoxide anion accumulation has been reported in deoxycorticosterone acetate (DOCA)-salt hypertension, in which endothelin-1 plays an important role in cardiovascular damage. We hypothesized that blockade of ETA receptors in DOCA-salt rats would decrease oxidative stress. Both systolic blood pressure (SBP, 210±9 mm Hg; P <0.05) and vascular superoxide generation in vivo were increased in DOCA-salt (44.9±10.3% of ethidium bromide–positive nuclei; P <0.05) versus control uninephrectomized (UniNx) rats (118±3 mm Hg; 18.5±3%, respectively). In DOCA-salt rats, the ETA antagonist BMS 182874 (40 mg/kg per day PO) lowered SBP (170±4 versus UniNx, 120±3 mm Hg) and normalized superoxide production (21.7±6 versus UniNx, 11.9±7%). Vitamin E (200 mg/kg per day PO) decreased superoxide formation in DOCA-salt rats (18.8±7%) but did not alter SBP. Oxidative stress in nonstimulated circulating polymorphonuclear cells (PMNs) or in PMNs treated with zymosan, an inducer of superoxide release, was similar in DOCA-salt and UniNx groups. Superoxide formation by PMNs was unaffected by treatment with BMS 182874. Western blot analysis showed increased nitrotyrosine-containing proteins in mesenteric vessels from DOCA-salt compared with UniNX. Treatment with either BMS 182874 or vitamin E abolished the differences in vascular nitrotyrosine-containing proteins between DOCA-salt and UniNX. Maximal relaxation to acetylcholine was decreased in DOCA-salt aortas (75.8±4.2% versus UniNx, 95.4±1.9%, P <0.05). BMS 182874 treatment increased acetylcholine-induced relaxation in DOCA-salt aortas to 93.5±4.5%. These in vivo findings indicate that increased vascular superoxide production is associated with activation of the endothelin system through ETA receptors in DOCA-salt hypertension, in apparently blood pressure–independent fashion.


European Journal of Pharmacology | 1997

Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test

Moacir Serralvo Faria; Marcelo N. Muscará; Heitor Moreno; Simone A. Teixeira; Heidi Bernadetta Dias; Benedito Oliveira; Frederico G. Graeff; Gilberto De Nucci

The involvement of nitric oxide (NO) in anxiety was investigated in rats, using the elevated plus maze test. Acute, but not chronic, systemic treatment with N omega-nitro-L-arginine methyl ester (L-NAME, 10 and 60 mg.kg-1), an inhibitor of NO synthase, increased the time spent by the rats in the open arms. Both the acute and chronic treatments with L-NAME inhibited NO synthase in endothelial cells and in the central nervous system, as shown by the increase in mean arterial pressure and decreased NO synthase activity in brain tissue. Chronic treatment with L-NAME also decreased the serum nitrate levels. The anxiolysis induced by acute L-NAME treatment is unlikely to be due to hypertension, since two-kidney one-clip hypertension in non-L-NAME-treated rats failed to significantly change exploratory behaviour in the elevated plus maze. These results indicate that acute inhibition of NO synthesis decreases anxiety in rats.


British Journal of Pharmacology | 2010

Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat.

E. Ekundi-Valentim; Karen T. dos Santos; Enilton A. Camargo; Alexandre Denadai-Souza; Simone A. Teixeira; C. I. Zanoni; Andrew D. Grant; John L. Wallace; Marcelo N. Muscará; Soraia K.P. Costa

Background and purpose:  Recent findings suggest that the noxious gas H2S is produced endogenously, and that physiological concentrations of H2S are able to modulate pain and inflammation in rodents. This study was undertaken to evaluate the ability of endogenous and exogenous H2S to modulate carrageenan‐induced synovitis in the rat knee.


Molecular Medicine | 2012

MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages.

Tarcio Teodoro Braga; Matheus Correa-Costa; Yuri Felipe Souza Guise; Angela Castoldi; Cassiano D. Oliveira; Meire Ioshie Hyane; Marcos Antonio Cenedeze; Simone A. Teixeira; Marcelo N. Muscará; Katia R. Perez; Iolanda M. Cuccovia; Alvaro Pacheco-Silva; Giselle Martins Gonçalves; Niels Olsen Saraiva Camara

Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88-dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CDllbhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF-β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.


Toxicon | 2001

Bothrops asper and Bothrops jararaca snake venoms trigger microbicidal functions of peritoneal leukocytes in vivo

Stella Regina Zamuner; José María Gutiérrez; Marcelo N. Muscará; Simone A. Teixeira; Catarina Teixeira

Venoms from snakes of the genus Bothrops cause pronounced local effects in the victims. These alterations result not only from the direct toxic action of venom components, but also from the prominent inflammatory reaction associated with these envenomations. In this study we investigated the ability of Bothrops asper (BaV) and Bothrops jararaca (BjV) venoms to induce cellular influx and microbicidal functions in leukocytes. BaV and BjV (5 microg/animal) caused a long lasting infiltration of leukocytes (3-48 h) when injected into mouse peritoneal cavity. Both venoms increased phagocytosis and production of hydrogen peroxide (H2O2) by polymorphonuclear (PMN) and mononuclear (MN) peritoneal leukocytes. In addition, nitric oxide (NO) production by macrophages was also enhanced after the venom injections. This effect was inhibited by treating animals with L-NAME and aminoguanidine, thus suggesting the induction of iNOS synthesis by the venoms. Western blot analysis confirmed the expression of iNOS in macrophages. BaV and BjV injection led to increased levels of IFN-gamma at the site of inflammation. Since IFN-gamma is an effective inducer of iNOS expression, an indirect action of the venoms on iNOS expression can be proposed. A marked formation of nitrotyrosine-containing proteins was also observed in macrophage homogenates. Based on these results, we suggest that reactive oxygen and nitrogen-derived species are involved in the pathogenesis of the local tissue damage characteristic of Bothrops sp envenomations.


web science | 2002

Neuroprotective action of melatonin on neonatal rat motoneurons after sciatic nerve transection

Fabio Rogerio; Luciano de Souza Queiroz; Simone A. Teixeira; Alexandre Leite Rodrigues de Oliveira; Gilberto De Nucci; Francesco Langone

The neuronal isoform of nitric oxide synthase (nNOS), a NADPH-dependent diaphorase, is considered to play a role in motoneuron death induced by sciatic nerve transection in neonatal rats. Neuronal loss in these circumstances has been correlated with nitric oxide (NO) production and NADPH-diaphorase positivity in motoneurons after axotomy. In the present study we looked for a possible protective effect of melatonin, an antioxidant agent and inhibitor of nNOS, on spinal motoneurons after axonal injury. Neonatal Wistar rats (P2) were submitted to sciatic nerve transection and allowed to survive to P7. Melatonin at doses of 1, 5, 10, 50 and 100 mg/kg was given subcutaneously before and at intervals after the surgery. Controls operated in the same way received dilution vehicle or no treatment. The animals were killed by perfusion of fixative and the spinal cord was examined in serial paraffin sections. The motoneurons of the sciatic pool were counted in the axotomized and contralateral sides. Immunohistochemistry for nNOS and glial fibrillary acidic protein was used to evaluate nNOS expression in the axotomized cells and the astrocytic response. We found that melatonin at doses of 1-50 mg/kg decreased neuronal death. Astrocytic hypertrophy in melatonin treated animals was less intense. There were no differences in nNOS expression between treated and control rats, and surviving motoneurons of the sciatic pool did not express the enzyme, suggesting that nNOS may not be involved in neuronal death or survival in these experimental conditions. Possible mechanisms of melatonin neuroprotection, which was equally effective at doses of 1-50 mg/kg, are discussed. Doses of 50 and 100 mg/kg caused failure to thrive, seizures or death. The fact that neuroprotective doses were far smaller than toxic ones should encourage testing of melatonin in neurologic diseases.


European Journal of Pharmacology | 2013

Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo.

Letícia Regina Benetti; Daiana Campos; Sonia A. Gurgueira; Anibal E. Vercesi; Cristiane E.V. Guedes; Kleber L. Santos; John L. Wallace; Simone A. Teixeira; Juliana Florenzano; Soraia K.P. Costa; Marcelo N. Muscará; Heloisa H.A. Ferreira

Recent studies show that endogenous hydrogen sulfide (H(2)S) plays an anti-inflammatory role in the pathogenesis of airway inflammation. This study investigated whether exogenous H(2)S may counteract oxidative stress-mediated lung damage in allergic mice. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with sodium hydrosulfide (NaHS) 30 min before OVA challenge. Forty eight hours after antigen-challenge, the mice were killed and leukocyte counting as well as nitrite plus nitrate concentrations were determined in the bronchoalveolar lavage fluid, and lung tissue was analysed for nitric oxide synthase (NOS) activity, iNOS expression, superoxide dismutase (SOD), catalase, glutathione reductase (GR) and glutathione peroxidase (GPx) activities, thiobarbituric acid reactive species and 3-nitrotyrosine containing proteins (3-NT). Pre-treatment of OVA-sensitized mice with NaHS resulted in significant reduction of both eosinophil and neutrophil migration to the lungs, and prevented the elevation of iNOS expression and activity observed in the lungs from the untreated allergic mice, although it did not affect 3-NT. NaHS treatment also abolished the increased lipid peroxidation present in the allergic mouse lungs and increased SOD, GPx and GR enzyme activities. These results show, for the first time, that the beneficial in vivo effects of the H(2)S-donor NaHS on allergic airway inflammation involve its inhibitory action on leukocyte recruitment and the prevention of lung damage by increasing endogenous antioxidant defenses. Thus, exogenous administration of H(2)S donors may be beneficial in reducing the deleterius impact of allergic pulmonary disease, and might represent an additional class of pharmacological agents for treatment of chronic pulmonary diseases.


Brain Research | 2012

Neuronal degeneration and gliosis time-course in the mouse hippocampal formation after pilocarpine-induced status epilepticus.

André Luiz do Nascimento; Neide Ferreira Santos; Fernanda Campos Pelágio; Simone A. Teixeira; Elenice A. de Moraes Ferrari; Francesco Langone

Temporal lobe epilepsy (TLE) is the most common type of human epilepsy and has been related with extensive loss of hippocampal pyramidal and dentate hilar neurons and gliosis. Many characteristics of TLE are reproduced in the pilocarpine model of epilepsy in mice. This study analyzed the neuronal damage, assessed with Fluoro-Jade (FJB) and cresyl violet, and gliosis, investigated with glial fibrilary acidic protein (GFAP) immunohistochemistry, occurring in the hippocampal formation of mice at 3, 6, 12 and 24h, 1 and 3 weeks after the pilocarpine-induced status-epilepticus (SE) onset. The maximum neuronal damage score and the FJB-positive neurons peak were found in the hilus of dentate gyrus 3 and 12 h after SE onset (P<0.05), respectively. At 1 week after SE onset, the greatest neuronal damage score was detected in the CA1 pyramidal cell layer and the greatest numbers of FJB-positive neurons were found both in the CA1 and CA3 pyramidal cell layers (P<0.05). The molecular, CA3 and CA1 pyramidal cell layers expressed highest presence of GFAP immunoreaction at 1 and 3 weeks after SE onset (P<0.05). Our findings show that, depending on the affected area, neuronal death and gliosis can occur within few hours or weeks after SE onset. Our results corroborate previous studies and characterize short time points of temporal evolution of neuropathological changes after the onset of pilocarpine-induced SE in mice and evidences that additional studies of this temporal evolution may be useful to the comprehension of the cellular mechanisms underlying epileptogenesis.


British Journal of Pharmacology | 2008

Long-term nitric oxide deficiency causes muscarinic supersensitivity and reduces β3-adrenoceptor-mediated relaxation, causing rat detrusor overactivity

Fabíola Z. Mónica; A A O Bricola; Fernando R. Báu; L L Lopes Freitas; Simone A. Teixeira; Marcelo N. Muscará; Fernando Maurício Francis Abdalla; Catarina S. Porto; G. De Nucci; Angelina Zanesco; Edson Antunes

Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long‐term nitric oxide (NO) deficiency on muscarinic receptor and β‐adrenoceptor modulation leading to overactivity of rat detrusor muscle.


The Journal of Physiology | 2004

Tetrahydrobiopterin improves endothelial dysfunction and vascular oxidative stress in microvessels of intrauterine undernourished rats

Maria do Carmo Pinho Franco; Zuleica B. Fortes; Eliana H. Akamine; Elisa Mitiko Kawamoto; Cristoforo Scavone; Luiz R.G. Britto; Marcelo N. Muscará; Simone A. Teixeira; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

In the present study, we investigated the effects of the exogenous application of tetrahydrobiopterin on the endothelium‐dependent vasorelaxation and superoxide anion generation in the mesenteric microvessels of intrauterine undernourished rats. In addition, we investigated the presence of peroxynitrite in these rats by evaluation of nitrotyrosine‐containing proteins, a stable end‐product of peroxynitrite oxidation. For this, female pregnant Wistar rats were fed either normal or 50% of the normal intake diets during the whole gestational period. Male offspring (16 weeks of age) were studied to assess microvascular reactivity, superoxide production using a hydroethidine staining assay, nitric oxide synthase (NOS) activity and nitric oxide (NO) production. Western blot analysis was used to quantify nitrotyrosine‐containing proteins and relative multiplex RT‐PCR analysis for endothelial NOS (eNOS) mRNA expression. Superfusion with tetrahydrobiopterin significantly decreased superoxide generation and improved vascular function. Intrauterine malnutrition induced a decrement of NOS activity and NO production without affecting the gene expression of eNOS. However, incubation with tetrahydrobiopterin significantly improved NO production after stimulation with acetylcholine or bradykinin in intrauterine undernourished rats. The fact that the nitrotyrosine‐containing proteins were increased could, at first sight, suggest that the peroxynitrite is the mediator responsible for the excessive oxidation and depletion of tetrahydrobiopterin. Our study shows that exogenous application of tetrahydrobiopterin leads to a significant improvement of endothelium‐dependent vasodilatation, enhanced NO production and decreased superoxide generation in microvessels of intrauterine undernourished rats. Since we found a decrease in NOS activity without an alteration in the gene expression of eNOS, we suggest that impaired NOS‐dependent responses of mesenteric arterioles are related to the impairment of tetrahydrobiopterin pathways.

Collaboration


Dive into the Simone A. Teixeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edson Antunes

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilberto De Nucci

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Enilton A. Camargo

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Francesco Langone

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge