Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone C. Yendle is active.

Publication


Featured researches published by Simone C. Yendle.


Nature Genetics | 2013

Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1

Gemma L. Carvill; Sinéad Heavin; Simone C. Yendle; Jacinta M. McMahon; Brian J. O'Roak; Joseph Cook; Adiba Khan; Michael O. Dorschner; Molly Weaver; Sophie Calvert; Stephen Malone; Geoffrey Wallace; Thorsten Stanley; Ann M. E. Bye; Andrew Bleasel; Katherine B. Howell; Sara Kivity; Mark T. Mackay; Victoria Rodriguez-Casero; Richard Webster; Amos D. Korczyn; Zaid Afawi; Nathanel Zelnick; Tally Lerman-Sagie; Dorit Lev; Rikke S. Møller; Deepak Gill; Danielle M. Andrade; Jeremy L. Freeman; Lynette G. Sadleir

Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic spectrum associated with mutations in known genes. Overall, we identified pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had 1 or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders.


Annals of Neurology | 2012

KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy

Sarah Weckhuysen; Simone Mandelstam; Arvid Suls; Dominique Audenaert; Tine Deconinck; Lieve Claes; Liesbet Deprez; Katrien Smets; Dimitrina Hristova; Iglika Yordanova; Albena Jordanova; Berten Ceulemans; A. Jansen; Danièle Hasaerts; Filip Roelens; Lieven Lagae; Simone C. Yendle; Thorsten Stanley; Sarah E. Heron; John C. Mulley; Samuel F. Berkovic; Ingrid E. Scheffer

KCNQ2 and KCNQ3 mutations are known to be responsible for benign familial neonatal seizures (BFNS). A few reports on patients with a KCNQ2 mutation with a more severe outcome exist, but a definite relationship has not been established. In this study we investigated whether KCNQ2/3 mutations are a frequent cause of epileptic encephalopathies with an early onset and whether a recognizable phenotype exists.


Nature Genetics | 2013

GRIN2A mutations cause epilepsy-aphasia spectrum disorders

Gemma L. Carvill; Brigid M. Regan; Simone C. Yendle; Brian J. O'Roak; Natalia Lozovaya; Nadine Bruneau; Nail Burnashev; Adiba Khan; Joseph Cook; Eileen Geraghty; Lynette G. Sadleir; Samantha J. Turner; Meng Han Tsai; Richard Webster; Robert Ouvrier; John A. Damiano; Samuel F. Berkovic; Jay Shendure; Michael S. Hildebrand; Pierre Szepetowski; Ingrid E. Scheffer; Mefford Hc

Epilepsy-aphasia syndromes (EAS) are a group of rare, severe epileptic encephalopathies of unknown etiology with a characteristic electroencephalogram (EEG) pattern and developmental regression particularly affecting language. Rare pathogenic deletions that include GRIN2A have been implicated in neurodevelopmental disorders. We sought to delineate the pathogenic role of GRIN2A in 519 probands with epileptic encephalopathies with diverse epilepsy syndromes. We identified four probands with GRIN2A variants that segregated with the disorder in their families. Notably, all four families presented with EAS, accounting for 9% of epilepsy-aphasia cases. We did not detect pathogenic variants in GRIN2A in other epileptic encephalopathies (n = 475) nor in probands with benign childhood epilepsy with centrotemporal spikes (n = 81). We report the first monogenic cause, to our knowledge, for EAS. GRIN2A mutations are restricted to this group of cases, which has important ramifications for diagnostic testing and treatment and provides new insights into the pathogenesis of this debilitating group of conditions.


Annals of Neurology | 2011

Rare copy number variants are an important cause of epileptic encephalopathies

Mefford Hc; Simone C. Yendle; Cynthia L. Hsu; Joseph Cook; Eileen Geraghty; Jacinta M. McMahon; Orvar Eeg-Olofsson; Lynette G. Sadleir; Deepak Gill; Bruria Ben-Zeev; Tally Lerman-Sagie; Mark T. Mackay; Jeremy L. Freeman; Eva Andermann; James T. Pelakanos; Ian Andrews; Geoffrey Wallace; Evan E. Eichler; Samuel F. Berkovic; Ingrid E. Scheffer

Rare copy number variants (CNVs)—deletions and duplications—have recently been established as important risk factors for both generalized and focal epilepsies. A systematic assessment of the role of CNVs in epileptic encephalopathies, the most devastating and often etiologically obscure group of epilepsies, has not been performed.


Neurology | 2010

Clinical spectrum of early-onset epileptic: encephalopathies associated with STXBP1 mutations

Liesbet Deprez; Sarah Weckhuysen; Philip Holmgren; Arvid Suls; T Van Dyck; Dirk Goossens; Jurgen Del-Favero; A. Jansen; Kristien Verhaert; Lieven Lagae; Albena Jordanova; R. Van Coster; Simone C. Yendle; Samuel F. Berkovic; Ingrid E. Scheffer; Berten Ceulemans; P. De Jonghe

Objectives: Heterozygous mutations in STXBP1, encoding the syntaxin binding protein 1, have recently been identified in Ohtahara syndrome, an epileptic encephalopathy with very early onset. In order to explore the phenotypic spectrum associated with STXBP1 mutations, we analyzed a cohort of patients with unexplained early-onset epileptic encephalopathies. Methods: We collected and clinically characterized 106 patients with early-onset epileptic encephalopathies. Mutation analysis of the STXBP1 gene was done using sequence analysis of the exon and intron–exon boundaries and multiplex amplification quantification to detect copy number variations. Results: We identified 4 truncating mutations and 2 microdeletions partially affecting STXBP1 in 6 of the 106 patients. All mutations are predicted to abolish STXBP1 function and 5 mutations were proven to occur de novo. None of the mutation-carrying patients had Ohtahara syndrome. One patient was diagnosed with West syndrome at disease onset, while the initial phenotype of 5 further patients did not fit into a specific recognized epilepsy syndrome. Three of these patients later evolved to West syndrome. All patients had severe to profound mental retardation, and ataxia or dyskinetic movements were present in 5 patients. Conclusion: This study shows that mutations in STXBP1 are not limited to patients with Ohtahara syndrome, but are also present in 10% (5/49) of patients with an early-onset epileptic encephalopathy that does not fit into either Ohtahara or West syndrome and rarely in typical West syndrome. STXBP1 mutational analysis should be considered in the diagnostic evaluation of this challenging group of patients.


Brain | 2011

Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology

Claudia B. Catarino; Joan Y. W. Liu; Ioannis Liagkouras; Vaneesha Gibbons; Robyn Labrum; Rachael Ellis; Cathy Woodward; Mary B. Davis; Shelagh Smith; J. Helen Cross; Richard Appleton; Simone C. Yendle; Jacinta M. McMahon; Susannah T. Bellows; Ts Jacques; Sameer M. Zuberi; Matthias J. Koepp; Lillian Martinian; Ingrid E. Scheffer; Maria Thom; Sanjay M. Sisodiya

Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20–66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy.


Neurology | 2011

De novo SCN1A mutations in migrating partial seizures of infancy

D. Carranza Rojo; L. Hamiwka; Jacinta M. McMahon; Leanne M. Dibbens; Todor Arsov; Arvid Suls; Tommy Stödberg; Kent Kelley; Elaine C. Wirrell; B. Appleton; Mark T. Mackay; Jeremy L. Freeman; Simone C. Yendle; Samuel F. Berkovic; T. Bienvenu; P. De Jonghe; David R. Thorburn; John C. Mulley; Mefford Hc; Ingrid E. Scheffer

Objective: To determine the genetic etiology of the severe early infantile onset syndrome of malignant migrating partial seizures of infancy (MPSI). Methods: Fifteen unrelated children with MPSI were screened for mutations in genes associated with infantile epileptic encephalopathies: SCN1A, CDKL5, STXBP1, PCDH19, and POLG. Microarray studies were performed to identify copy number variations. Results: One patient had a de novo SCN1A missense mutation p.R862G that affects the voltage sensor segment of SCN1A. A second patient had a de novo 11.06 Mb deletion of chromosome 2q24.2q31.1 encompassing more than 40 genes that included SCN1A. Screening of CDKL5 (13/15 patients), STXBP1 (13/15), PCDH19 (9/11 females), and the 3 common European mutations of POLG (11/15) was negative. Pathogenic copy number variations were not detected in 11/12 cases. Conclusion: Epilepsies associated with SCN1A mutations range in severity from febrile seizures to severe epileptic encephalopathies including Dravet syndrome and severe infantile multifocal epilepsy. MPSI is now the most severe SCN1A phenotype described to date. While not a common cause of MPSI, SCN1A screening should now be considered in patients with this devastating epileptic encephalopathy.


Epilepsia | 2015

Mutations in KCNT1 cause a spectrum of focal epilepsies

Rikke S. Møller; Sarah E. Heron; Line H.G. Larsen; Chiao Xin Lim; Michael G. Ricos; Marta A. Bayly; Marjan van Kempen; Sylvia Klinkenberg; Ian Andrews; Kent Kelley; Gabriel M. Ronen; David Callen; Jacinta M. McMahon; Simone C. Yendle; Gemma L. Carvill; Mefford Hc; Rima Nabbout; Annapurna Poduri; Pasquale Striano; Maria Giuseppina Baglietto; Federico Zara; Nicholas J. Smith; Clair Pridmore; Elena Gardella; Marina Nikanorova; Hans Atli Dahl; Pia Gellert; Ingrid E. Scheffer; Boudewijn Gunning; Bente Kragh-Olsen

Autosomal dominant mutations in the sodium‐gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype–phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.


Epilepsia | 2013

Reduction of seizure frequency after epilepsy surgery in a patient with STXBP1 encephalopathy and clinical description of six novel mutation carriers

Sarah Weckhuysen; Philip Holmgren; Rik Hendrickx; Anna Jansen; Danièle Hasaerts; Charlotte Dielman; Julitta de Bellescize; Nadia Boutry-Kryza; Gaetan Lesca; Sarah von Spiczak; Ingo Helbig; Deepak Gill; Simone C. Yendle; Rikke S. Møller; Laura L. Klitten; Christian Korff; Catherine Godfraind; Kenou Van Rijckevorsel; Helle Hjalgrim; Ingrid E. Scheffer; Arvid Suls

Mutations in STXBP1 have been identified in a subset of patients with early onset epileptic encephalopathy (EE), but the full phenotypic spectrum remains to be delineated. Therefore, we screened a cohort of 160 patients with an unexplained EE, including patients with early myoclonic encephalopathy (EME), Ohtahara syndrome, West syndrome, nonsyndromic EE with onset in the first year, and Lennox‐Gastaut syndrome (LGS). We found six de novo mutations in six patients presenting as Ohtahara syndrome (2/6, 33%), West syndrome (1/65, 2%), and nonsyndromic early onset EE (3/64, 5%). No mutations were found in LGS or EME. Only two of four mutation carriers with neonatal seizures had Ohtahara syndrome. Epileptic spasms were present in five of six patients. One patient with normal magnetic resonance imaging (MRI) but focal seizures underwent epilepsy surgery and seizure frequency dropped drastically. Neuropathology showed a focal cortical dysplasia type 1a. There is a need for additional neuropathologic studies to explore whether STXBP1 mutations can lead to structural brain abnormalities.


Epilepsia | 2015

Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome

Bronwyn E. Grinton; Sarah E. Heron; James T. Pelekanos; Sameer M. Zuberi; Sara Kivity; Zaid Afawi; Tristiana C. Williams; Dan Casalaz; Simone C. Yendle; Ilan Linder; Dorit Lev; Tally Lerman-Sagie; Stephen Malone; Haim Bassan; Hadassa Goldberg-Stern; Thorsten Stanley; Michael Hayman; Sophie Calvert; Amos D. Korczyn; Michael Shevell; Ingrid E. Scheffer; John C. Mulley; Samuel F. Berkovic

We evaluated seizure outcome in a large cohort of familial neonatal seizures (FNS), and examined phenotypic overlap with different molecular lesions.

Collaboration


Dive into the Simone C. Yendle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey Wallace

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joseph Cook

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mefford Hc

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark T. Mackay

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Heron

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge