Simone Cappello
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Cappello.
Marine Pollution Bulletin | 2012
Mehdi Hassanshahian; Giti Emtiazi; Simone Cappello
Twenty-five crude-oil-degrading bacteria were isolated from oil-contaminated sites in the Persian Gulf and the Caspian Sea. Based on a high growth rate on crude oil and on hydrocarbon degradation ability, 11 strains were selected from the 25 isolated strains for further study. Determination of the nucleotide sequence of the 16S rRNA gene showed that these isolated strains belonged to genera Acinetobacter, Pseudomonas, Gordonia, Rhodococcus, Cobetia, Halomonas, Alcanivorax, Marinobacter and Microbacterium. Among the 11 isolates, strains BS (Acinetobacter calcoaceticus, 98%) and PG-12 (Alcanivorax dieselolei, 98%) were the most effective in degrading crude oil. Rate of crude-oil degradation of 82% (isolate BS) and 71% (isolate PG-12) were observed after 1 week of cultivation in mineral medium. These strains had high emulsification activity and biosurfactant production. GC-MS analysis showed that A. dieselolei PG-12 can degrade different alkanes in crude oil. Screening of the distribution of the alkane hydroxylase gene in 25 isolates in relation to the source of isolation indicated that the group (II) alkane hydroxylase is prevalent in the Caspian Sea, but in the Persian Gulf, the frequency of the group (III) alkane hydroxylase gene is greater than that of the group (II) alkane hydroxylase gene.
FEMS Microbiology Ecology | 2004
Michail M. Yakimov; Gabriella Gentile; Vivia Bruni; Simone Cappello; Giuseppe D'Auria; Peter N. Golyshin; Laura Giuliano
For preliminary screening of human impact on Antarctic coasts, the compositions of microbial communities were analyzed in seawater at two sites located in the Terra Nova Bay of Antarctica (Ross Sea) by a combination of 16S rRNA gene sequencing and culture techniques. The bacterial community in the sample from the Rod Bay site, located at the proximity to the Italian Station, was characterized by a high abundance of 16S rRNA gene sequences belonging to the microflora typically found in soil and freshwater environments. In contrast, the seawater sample from the Adelie Cove station, a pristine reference site, contained 16S rRNA gene sequences typically found in marine areas affected by algal blooms and sea ice decay. The addition of crude oil to the Rod Bay seawater sample rapidly induced a shift in the composition of the bacterial community with appearance of novel taxonomic groups and a dramatic increase in the relative abundance of gamma-Proteobacteria sequences, whereas no significant changes were detected in the bacterial community of the Adelie Cove sample under the same conditions. Bacteria-exhibiting features with potential interest for industrial and environmental applications were isolated from the Rod Bay oil-enriched sample. In particular, hydrocarbon-degrading, cold-adapted bacteria were selectively enriched, isolated and screened for their ability to synthesize polyunsaturated fatty acids. Twenty two bacterial strains were isolated from the oil enrichment culture and identified. Eighteen isolates were found to be members of gamma-Proteobacteria, while the remainder were representatives of alpha-Proteobacteria, CFB and high G + C divisions.
Marine Pollution Bulletin | 2012
Mehdi Hassanshahian; Hamid Tebyanian; Simone Cappello
Among six crude oil-degrading yeasts that were isolated from an oil-polluted area in the Persian Gulf, two yeast strains showed high degradation activity of aliphatic hydrocarbons. From an analysis of 18S rRNA sequences and biochemical characteristics, these strains were identified as Yarrowia lipolytica strains PG-20 and PG-32. Gas Chromatography (GC) analysis of the crude oil remaining in the culture medium after 1 week at 30°C showed that the strains PG-20 and PG-32 degraded 68% and 58% of crude oil, respectively. The optimal growth condition and biodegradation of hydrocarbons was in ONR medium with an acidic pH (pH5). These two strains may degrade aliphatic hydrocarbons more efficiently than aromatic hydrocarbons, although strain PG-20 had better degradation than strain PG-32. The two Y. lipolytica strains reduce surface tension when cultured on hydrocarbon substrates (1% v/v). These strains showed a cell surface hydrophobicity higher than 70%. These results suggested that Y. lipolytica strains PG-20 and PG-32 have high crude oil degrading activity due to their high emulsifying activity and cell hydrophobicity. In conclusion, these yeast strains can be useful for the bioremediation process in the Persian Gulf and decreasing oil pollution in this marine ecosystem.
Scientific Reports | 2015
Rafael Bargiela; Francesca Mapelli; David Rojo; Bessem Chouaia; Jesús Tornés; Sara Borin; Michael Richter; Mercedes V. Del Pozo; Simone Cappello; Christoph Gertler; Maria Genovese; Renata Denaro; Mónica Martínez-Martínez; Stilianos Fodelianakis; Ranya A. Amer; David Bigazzi; Xifang Han; Jianwei Chen; Tatyana N. Chernikova; Olga V. Golyshina; Mouna Mahjoubi; Atef Jaouanil; Fatima Benzha; Mirko Magagnini; Emad Hussein; Fuad A. Al-Horani; Ameur Cherif; Mohamed Blaghen; Yasser R. Abdel-Fattah; Nicolas Kalogerakis
Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.
Soil & Sediment Contamination | 2010
Mehdi Hassanshahian; Giti Emtiazi; Rouha Kasra Kermanshahi; Simone Cappello
The responses of the natural microbial community in contaminated and uncontaminated sediments of the Persian Gulf and the Caspian Sea were evaluated by microcosm experiments. Analysis of bacterial densities (total heterotrophic, hydrocarbon-degrading and hydrocarbonoclastic bacteria count), microbial metabolic activities (enzymatic activities), and detection of catabolic genes of alkane hydroxylase systems by PCR were performed on subsurface sediment during 120 days of the experiment. The results showed that contaminated sediments from both areas had high dehydrogenase and lipase activities and low β-glucosidase activity. Lipase and dehydrogenase activities in Persian Gulf sediments were more than from Caspian Sea sediments. On the other hand, Caspian Sea sediments have lower dehydrogenase and lipase activity than the Persian Gulf. PCR analysis revealed the presence of alkane hydroxylase genes in both sediments with prevalence in contaminated sediments. Moreover, by PCR analysis with specific primers, the alkB1 gene of Alcanivorax sp. was detected only in contaminated seawater from the Persian Gulf as well as in artificially oil-contaminated seawater from the Persian Gulf and Caspian Sea. Apparently, the exposure to petroleum hydrocarbons contamination altered the microbial and enzymatic activities of sediments. The detection of alkB1 gene has been suggested as an indicator of oil contamination.
Origins of Life and Evolution of Biospheres | 2007
Michail M. Yakimov; Laura Giuliano; Simone Cappello; Renata Denaro; Peter N. Golyshin
The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.
Frontiers in Microbiology | 2014
Maria Genovese; Francesca Crisafi; Renata Denaro; Simone Cappello; Daniela Russo; Rosario Calogero; Santina Santisi; Maurizio Catalfamo; Alfonso Modica; Francesco Smedile; Lucrezia Genovese; Peter N. Golyshin; Laura Giuliano; Michail M. Yakimov
The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical–chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.
BMC Microbiology | 2014
Marcello Tagliavia; Enzo Messina; Barbara Manachini; Simone Cappello
BackgroundThe red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy).ResultsThe 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%). High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions. Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected.ConclusionsThe RPW gut microbiota is composed mainly of facultative and obligate anaerobic bacteria with a fermentative metabolism. These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.
The Open Microbiology Journal | 2015
Zeynab Bayat; Mehdi Hassanshahian; Simone Cappello
Petroleum hydrocarbons are the most common environmental pollutants in the world and oil spills pose a great hazard to terrestrial and marine ecosystems. Oil pollution may arise either accidentally or operationally whenever oil is produced, transported, stored and processed or used at sea or on land. Oil spills are a major menace to the environment as they severely damage the surrounding ecosystems. To improve the survival and retention of the bioremediation agents in the contaminated sites, bacterial cells must be immobilized. Immobilized cells are widely tested for a variety of applications. There are many types of support and immobilization techniques that can be selected based on the sort of application. In this review article, we have discussed the potential of immobilized microbial cells to degrade petroleum hydrocarbons. In some studies, enhanced degradation with immobilized cells as compared to free living bacterial cells for the treatment of oil contaminated areas have been shown. It was demonstrated that immobilized cell to be effective and is better, faster, and can be occurred for a longer period
Marine Pollution Bulletin | 2012
Simone Cappello; Maria Genovese; Camilla Della Torre; Antonella Crisari; Mehdi Hassanshahian; Santina Santisi; Rosario Calogero; Michail M. Yakimov
Microcosms experiments were carried out to evaluate the effect of bioemulsificant exopolysaccharide (EPS₂₀₀₃) on microbial community dynamics. An experimental seawater microcosm, supplemented with crude oil and EPS₂₀₀₃ (SW+OIL+EPS₂₀₀₃), was monitored for 15 days and compared to control microcosm (only oil-polluted seawater, SW+OIL). Determination of bacterial abundance, heterotrophic cultivable and hydrocarbon-degrading bacteria were carried out during all experimentation period. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil degradation was monitored by GC-MS analysis. Bioemulsificant addition stimulated an increase of the total bacterial abundance, change in the community structure and activity. The bioemulsificant also increased of 5 times the oil biodegradation rate. The data obtained from microcosm experiment indicated that EPS₂₀₀₃ could be used for the dispersion of oil slicks and could stimulate the selection of marine hydrocarbon degraders thus increasing bioremediation process.