Simone Cesca
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Cesca.
Science | 2016
Magnús T. Gudmundsson; Kristín Jónsdóttir; Andrew Hooper; Eoghan P. Holohan; Sæmundur A. Halldórsson; Benedikt Ofeigsson; Simone Cesca; Kristin S. Vogfjord; Freysteinn Sigmundsson; Thórdís Högnadóttir; Páll Einarsson; Olgeir Sigmarsson; A. H. Jarosch; Kristján Jónasson; Eyjólfur Magnússon; Sigrún Hreinsdóttir; Marco Bagnardi; Michelle Parks; Vala Hjörleifsdóttir; Finnur Pálsson; Thomas R. Walter; Martin P.J. Schöpfer; Sebastian Heimann; Hannah I. Reynolds; Stéphanie Dumont; E. Bali; Gudmundur H. Gudfinnsson; Torsten Dahm; Matthew J. Roberts; Martin Hensch
Driven to collapse Volcanic eruptions occur frequently, but only rarely are they large enough to cause the top of the mountain to collapse and form a caldera. Gudmundsson et al. used a variety of geophysical tools to monitor the caldera formation that accompanied the 2014 Bárdarbunga volcanic eruption in Iceland. The volcanic edifice became unstable as magma from beneath Bárdarbunga spilled out into the nearby Holuhraun lava field. The timing of the gradual collapse revealed that it is the eruption that drives caldera formation and not the other way around. Science, this issue p. 262 Magma flow from under the Bárdarbunga volcano drove caldera collapse during the 2014 eruption. INTRODUCTION The Bárdarbunga caldera volcano in central Iceland collapsed from August 2014 to February 2015 during the largest eruption in Europe since 1784. An ice-filled subsidence bowl, 110 square kilometers (km2) in area and up to 65 meters (m) deep developed, while magma drained laterally for 48 km along a subterranean path and erupted as a major lava flow northeast of the volcano. Our data provide unprecedented insight into the workings of a collapsing caldera. RATIONALE Collapses of caldera volcanoes are, fortunately, not very frequent, because they are often associated with very large volcanic eruptions. On the other hand, the rarity of caldera collapses limits insight into this major geological hazard. Since the formation of Katmai caldera in 1912, during the 20th century’s largest eruption, only five caldera collapses are known to have occurred before that at Bárdarbunga. We used aircraft-based altimetry, satellite photogrammetry, radar interferometry, ground-based GPS, evolution of seismicity, radio-echo soundings of ice thickness, ice flow modeling, and geobarometry to describe and analyze the evolving subsidence geometry, its underlying cause, the amount of magma erupted, the geometry of the subsurface caldera ring faults, and the moment tensor solutions of the collapse-related earthquakes. RESULTS After initial lateral withdrawal of magma for some days though a magma-filled fracture propagating through Earth’s upper crust, preexisting ring faults under the volcano were reactivated over the period 20 to 24 August, marking the onset of collapse. On 31 August, the eruption started, and it terminated when the collapse stopped, having produced 1.5 km of basaltic lava. The subsidence of the caldera declined with time in a near-exponential manner, in phase with the lava flow rate. The volume of the subsidence bowl was about 1.8 km3. Using radio-echo soundings, we find that the subglacial bedrock surface after the collapse is down-sagged, with no indications of steep fault escarpments. Using geobarometry, we determined the depth of magma reservoir to be ~12 km, and modeling of geodetic observations gives a similar result. High-precision earthquake locations and moment tensor analysis of the remarkable magnitude M5 earthquake series are consistent with steeply dipping ring faults. Statistical analysis of seismicity reveals communication over tens of kilometers between the caldera and the dike. CONCLUSION We conclude that interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual near-exponential decline of both the collapse rate and the intensity of the 180-day-long eruption. By combining our various data sets, we show that the onset of collapse was caused by outflow of magma from underneath the caldera when 12 to 20% of the total magma intruded and erupted had flowed from the magma reservoir. However, the continued subsidence was driven by a feedback between the pressure of the piston-like block overlying the reservoir and the 48-km-long magma outflow path. Our data provide better constraints on caldera mechanisms than previously available, demonstrating what caused the onset and how both the roof overburden and the flow path properties regulate the collapse. The Bárdarbunga caldera and the lateral magma flow path to the Holuhraun eruption site. (A) Aerial view of the ice-filled Bárdarbunga caldera on 24 October 2014, view from the north. (B) The effusive eruption in Holuhraun, about 40 km to the northeast of the caldera
Journal of Seismology | 2013
Simone Cesca; Alexander Rohr; Torsten Dahm
Human activities, including operations related to mining and reservoir exploitation, may induce seismicity and pose a risk for population and infrastructures. While different observations are commonly used to assess the origin of earthquakes, there is a lack of rules and methods for the discrimination between natural and induced seismicity. The inversion and decomposition of the full moment tensor and the observation of relevant deviation from a pure double couple (DC) model may be an indicator for induced seismicity. We establish here a common procedure to analyse a set of natural and induced events of similar magnitude, which occurred in Germany and neighbouring regions. The procedure is based on an inversion method and on a consistent velocity model and recording network. Induced seismicity is recorded during different mining and/or reservoir exploitations. Moment tensors are inverted using a multi-step inversion approach. This method, which was successfully applied in previous studies at regional and teleseismic distances, is further developed here to account for full moment tensor analysis. We first find a best DC solution and then perform a full moment tensor inversion, fitting full waveforms amplitude spectra at regional distances. The moment tensor solution is decomposed into DC, compensated linear vector dipole and isotropic terms. The discrimination problem is then investigated through the evaluation of distributions of non-DC source components for natural and induced data sets. Results illustrate the potential of the inversion and discrimination approach. Additional detailed analyses are carried out for the two most significant induced earthquakes, and rupture models are compared with the full moment tensor solutions.
Bulletin of the Seismological Society of America | 2011
E. Buforn; C. Pro; Simone Cesca; Agustín Udías; C. del Fresno
The deep earthquake ( h =650 km) that occurred on 11 April 2010 south of Granada, Spain, has been studied using the inversion of body waves at teleseismic and regional distances. We have obtained a solution of dip-slip motion on either a vertical plane or a nearly horizontal plane with the pressure axis dipping 45° to the east. The horizontal plane is chosen as the rupture plane, with rupture propagating from east to west on the basis of directivity effects at teleseismic distances and differences of the waveforms at regional distances. The comparison of these results with the focal mechanisms of four other deep earthquakes that occurred in the same area shows similar rupture processes. The origin of this deep seismic activity remains an open question. Tomographic studies have shown the existence of an anomalous body in this region that extends from 200- to 700-km depth. The olivine-spinel phase transitions or shear melting along horizontal planes inside of this body may be an explanation for the occurrence of these earthquakes.
Reviews of Geophysics | 2017
Francesco Grigoli; Simone Cesca; Enrico Priolo; Antonio Pio Rinaldi; John Clinton; Tony Alfredo Stabile; Bernard Dost; Mariano Garcia Fernandez; Stefan Wiemer; Torsten Dahm
Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.
Journal of Seismology | 2013
Torsten Dahm; Dirk Becker; M. Bischoff; Simone Cesca; Bernard Dost; R. Fritschen; Sebastian Hainzl; Christian D. Klose; Daniela Kühn; Stanislaw Lasocki; Th. Meier; Matthias Ohrnberger; Eleonora Rivalta; Ulrich Wegler; Stephan Husen
Various techniques are utilized by the seismological community, extractive industries, energy and geoengineering companies to identify earthquake nucleation processes in close proximity to engineering operation points. These operations may comprise fluid extraction or injections, artificial water reservoir impoundments, open pit and deep mining, deep geothermal power generations or carbon sequestration. In this letter to the editor, we outline several lines of investigation that we suggest to follow to address the discrimination problem between natural seismicity and seismic events induced or triggered by geoengineering activities. These suggestions have been developed by a group of experts during several meetings and workshops, and we feel that their publication as a summary report is helpful for the geoscientific community. Specific investigation procedures and discrimination approaches, on which our recommendations are based, are also published in this Special Issue (SI) of Journal of Seismology.
Journal of Geophysical Research | 2015
Torsten Dahm; Simone Cesca; Sebastian Hainzl; Thomas Braun; Frank Krüger
Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the M-w 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the M-w 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Sohlingen gas field; and (3) the M-w 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly human induced, not even human triggered, and a third case in between both extremes.
Seismological Research Letters | 2016
Łukasz Rudziński; Simone Cesca; Grzegorz Lizurek
On 19 March 2013, a strong, shallow, induced seismic event struck a mining panel in the room‐and‐pillar Rudna copper mine in southeastern Poland. The event caused important damage at the mining tunnel and trapped 19 miners, who were safely rescued a few hours later. Although mining‐induced seismicity is frequent at this mine, the 19 March event was unusual because of its larger magnitude, its occurrence far from the mining stopes, and because it was accompanied by a strong hazardous rockburst. The mining inspections following the event verified the occurrence of a rockfall with tunnel floor uplift but also recognized the presence of a faulting structure at the hypocentral location. The availability of three monitoring networks (including local and regional data, short‐period and broadband seismometers, and surface and in‐mine installation) presented an optimal setup to determine rupture parameters and to compare the performance and results from different installations. We performed waveform and spectral‐based analysis to infer source properties, with a particular interest to the determination of the rupture processes, using different moment tensor (MT) inversion techniques. Our results are surprisingly different, ranging from a dominant thrust mechanism, resolved at closest distances, to a collapse‐type rupture, resolved at regional distances. We demonstrate that a complex rupture model is needed to explain all observations and to justify these discrepancies. The final scenario indicates that the rupture nucleated as a weaker thrust mechanism along a pre‐existing weakened surface and then continued in a more energetic collapse event. The local LUMINEOS surface network has the potential to resolve both subevents but not using a standard MT decomposition. Here, we propose a new MT decomposition and an alternative MT fitting procedure that can be used to analyze the MT of collapse sources.
Scientific Reports | 2016
Francesco Grigoli; Simone Cesca; Lars Krieger; Marius Kriegerowski; Sergio Gammaldi; Josef Horálek; Enrico Priolo; Torsten Dahm
Accurate and automated locations of microseismic events are desirable for many seismological and industrial applications. The analysis of microseismicity is particularly challenging because of weak seismic signals with low signal-to-noise ratio. Traditional location approaches rely on automated picking, based on individual seismograms, and make no use of the coherency information between signals at different stations. This strong limitation has been overcome by full-waveform location methods, which exploit the coherency of waveforms at different stations and improve the location robustness even in presence of noise. However, the performance of these methods strongly depend on the accuracy of the adopted velocity model, which is often quite rough; inaccurate models result in large location errors. We present an improved waveform stacking location method based on source-specific station corrections. Our method inherits the advantages of full-waveform location methods while strongly mitigating the dependency on the accuracy of the velocity model. With this approach the influence of an inaccurate velocity model on the results is restricted to the estimation of travel times solely within the seismogenic volume, but not for the entire source-receiver path. We finally successfully applied our new method to a realistic synthetic dataset as well as real data.
Journal of Seismology | 2013
Simone Cesca; Bernard Dost; Adrien Oth
Triggered and induced seismicity are the earth response to transient non-tectonic phenomena. In a common definition, a triggered earthquake is assumed as an event whose occurrence is anticipated in view of the background seismicity rate. The triggering process, caused by a transient phenomena, only concerns the nucleation of a small region of the rupture area, whereas the entire rupture is controlled by the background stress. An induced event, in change, is entirely (e.g. in terms of rupture size and energy released) controlled by its causative origin and would not occur without it. A complementary, stress-based approach to define the boundary among triggered and induced seismicity was discussed by McGarr and Simpson (1997), in the specific framework of anthropogenic seismicity. According to their classification, a broader term of “stimulated” seismicity could be used to describe both triggered and induced seismicity. Transients which can induce or trigger seismicity can either be of natural or anthropogenic origin. Natural phenomena which can favour seismicity include rain, snow, pore pressure changes, magma dikes, and geothermal and volcanic processes. Earthquake– earthquake interactions may also be considered as a specific case of triggered seismicity. A second, important group of induced and triggered events are those of anthropogenic origin. Different human-related activities may favour, or inhibit, the earthquake occurrence, e.g. by inducing local stress perturbations, affecting the subsurface strain, or inducing changes in the pore pressure. Known cases of human operations which can induce seismicity or microseismicity include mining operations and mass shifts, water reservoir impoundment, drilling, oiland gas-field exploitation, hydro-fracturing, and fluid injection and removal. The theme of induced seismicity, and more specifically of anthropogenic induced seismicity, is nowadays of great interest, not only for the scientific community, but also for the society. On one side, several new techniques have been developed and applied for the purpose of mining, hydrocarbon production, hydraulic fracturing or fluid injection/removal. Related geo-engineering operations can possibly significantly modify the seismicity rate, either inducing or inhibiting the seismicity at different scales. A J Seismol (2013) 17:1–4 DOI 10.1007/s10950-012-9338-z
Journal of Geophysical Research | 2015
Luigi Passarelli; Eleonora Rivalta; Simone Cesca; Yosuke Aoki
Faulting processes in volcanic areas result from a complex interaction of pressurized fluid-filled cracks and conduits with the host rock and local and regional tectonic setting. Often, volcanic seismicity is difficult to decipher in terms of the physical processes involved, and there is a need for models relating the mechanics of volcanic sources to observations. Here we use focal mechanism data of the energetic swarm induced by the 2000 dike intrusion at Miyakejima (Izu Archipelago, Japan), to study the relation between the 3-D dike-induced stresses and the characteristics of the seismicity. We perform a clustering analysis on the focal mechanism (FM) solutions and relate them to the dike stress field and to the scaling relationships of the earthquakes. We find that the strike and rake angles of the FMs are strongly correlated and cluster on bands in a strike-rake plot. We suggest that this is consistent with optimally oriented faults according to the expected pattern of Coulomb stress changes. We calculate the frequency-size distribution of the clustered sets finding that focal mechanisms with a large strike-slip component are consistent with the Gutenberg-Richter relation with a b value of about 1. Conversely, events with large normal faulting components deviate from the Gutenberg-Richter distribution with a marked roll-off on its right-hand tail, suggesting a lack of large-magnitude events (Mw > 5.5). This may result from the interplay of the limited thickness and lower rock strength of the layer of rock above the dike, where normal faulting is expected, and lower stress levels linked to the faulting style and low confining pressure.