Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Cutini is active.

Publication


Featured researches published by Simone Cutini.


NeuroImage | 2014

Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data

Sabrina Brigadoi; Lisa Ceccherini; Simone Cutini; Fabio Scarpa; Pietro Scatturin; Juliette Selb; Louis Gagnon; David A. Boas; Robert J. Cooper

Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment.


Journal of Near Infrared Spectroscopy | 2012

Review: Functional near infrared optical imaging in cognitive neuroscience: an introductory review

Simone Cutini; Sara Basso Moro; Silvia Bisconti

Cognitive neuroscience is a multidisciplinary field focused on the exploration of the neural substrates underlying cognitive functions; the most remarkable progress in understanding the relationship between brain and cognition has been made with functional brain imaging. Functional near infrared (fNIR) spectroscopy is a non-invasive brain imaging technique that measures the variation of oxygenated and deoxygenated haemoglobin at high temporal resolution. Stemming from the first pioneering experiments, the use of fNIR spectroscopy in cognitive neuroscience has constantly increased. Here, we present a brief review of the fNIR spectroscopy investigations in the cognitive neuroscience field. The topics discussed encompass the classical issues in cognitive neuroscience, such as the exploration of the neural correlates of vision, language, memory, attention and executive functions. Other relevant research topics are introduced in order to show the strengths and the limitations of fNIR spectroscopy, as well as its potential in the biomedical field. This review is intended to provide a general view of the wide variety of optical imaging applications in the field of cognitive neuroscience. The increasing body of studies and the constant technical improvement suggest that fNIR spectroscopy is a versatile and promising instrument to investigate the neural correlates of human cognition.


NeuroImage | 2008

Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.

Simone Cutini; Pietro Scatturin; Enrica Menon; Patrizia Bisiacchi; Luciano Gamberini; Marco Zorzi; Roberto Dell'Acqua

In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human lateral prefrontal cortex and the superior frontal gyrus during the task-switching paradigm. Whether neural activation in these regions is dissociable and associated with separable cognitive components of task switching has been a matter of recent debate. We used multi-channel near-infrared spectroscopy (fNIRS) to measure brain cortical activity in a task-switching paradigm designed to avoid task differences, order predictability, and frequency effects. The results showed a generalized bilateral activation of the lateral prefrontal cortex and the superior frontal gyrus in both switch trials and repetition trials. To isolate the activity selectively associated with the task-switch, the overall activity recorded during repetition trials was subtracted from the activity recorded during switch trials. Following subtraction, the remaining activity was entirely confined to the left portion of the superior frontal gyrus. The present results suggest that factors associated with load and maintenance of distinct stimulus-response mapping rules in working memory are likely contributors to the activation of the lateral prefrontal cortex, whereas only activity in the left superior frontal gyrus can be linked unequivocally to switching between distinct cognitive tasks.


NeuroImage | 2007

Neurovascular coupling is impaired in cerebral microangiopathy – An event related Stroop study

Matthias L. Schroeter; Simone Cutini; Margarethe M. Wahl; Rainer Scheid; D. Yves von Cramon

Small-vessel disease or cerebral microangiopathy is a common finding in elderly people leading finally to subcortical ischemic vascular dementia. Because cerebral microangiopathy impairs vascular reactivity and affects mainly the frontal lobes, we hypothesized that brain activation decreases during an event-related color-word matching Stroop task. 12 patients suffering from cerebral microangiopathy were compared with 12 age-matched controls. As an imaging method we applied functional near-infrared spectroscopy, because it is particularly sensitive to the microvasculature. The Stroop task led to activations in the lateral prefrontal cortex. Generally, the amplitude of the hemodynamic response was reduced in patients in tight correlation with behavioral slowing during the Stroop task and with neuropsychological deficits, namely attentional and executive dysfunction. Interestingly, patients showed an early deoxygenation of blood right after stimulation onset, and a delay of the hemodynamic response. Whereas the amplitude of the hemodynamic response is reduced in the frontal lobes also with normal aging, data suggest that impairments of neurovascular coupling are specific for cerebral microangiopathy. In summary, our findings indicate frontal dysfunction and impairments of neurovascular coupling in cerebral microangiopathy.


NeuroImage | 2014

A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study

Sara Basso Moro; Silvia Bisconti; Makii Muthalib; Matteo Spezialetti; Simone Cutini; Marco Ferrari; Giuseppe Placidi; Valentina Quaresima

Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11 and 46). The results have indicated that the errors increased between the first and the second level of difficulty of the ISBT, then decreased and remained constant; the returning time progressively increased during the first three levels of difficulty and then remained constant. During the CSBT, the errors and the returning time did not change. In the ISBT, the increase of the first three levels of difficulty was accompanied by a progressive increase in PFC O2Hb and a less consistent decrease in HHb. A tendency to plateau was observable for PFC O2Hb and HHb changes in the fourth level of difficulty of the ISBT, which could be partly explained by a learning effect. A right hemispheric lateralization was not found. A lower amplitude of increase in O2Hb and decrease in HHb was found in the PFC in response to the CSBT with respect to the ISBT. This study has demonstrated that the oxygenation increased over the PFC while performing an ISBT in a semi-immersive VR environment. These data reinforce the involvement of the PFC in attention-demanding balance tasks. Considering the adaptability of this virtual balance task to specific neurological disorders, the absence of motion sensing devices, and the motivating/safe semi-immersive VR environment, the ISBT adopted in this study could be considered valuable for diagnostic testing and for assessing the effectiveness of functional neurorehabilitation.


NeuroImage | 2011

A new method based on ICBM152 head surface for probe placement in multichannel fNIRS

Simone Cutini; Pietro Scatturin; Marco Zorzi

We propose a new probe placement method for multichannel functional Near Infrared Spectroscopy (fNIRS) based on the ICBM152 template, the most commonly used reference brain for neuroimaging. Our method is based on the use of a physical model of the ICBM152 head surface as reference scalp and its validity is supported by previous investigations of cranio-cerebral correlation. The method, intended for fNIRS group studies, dispenses with the use of individual MRI scan and digitizing procedure for each participant. The present approach offers a fast, simple, reproducible and straightforward method to place the probes on the head surface according to the MNI coordinates of the regions of interest with an average measurement error similar to those of previous methods. This ensures that fNIRS results can be readily compared within the neuroimaging community, both across studies and techniques.


Psychiatry Research-neuroimaging | 2009

Right prefrontal brain activation due to stroop interference is altered in attention-deficit hyperactivity disorder - A functional near-infrared spectroscopy study

Sonya Jourdan Moser; Simone Cutini; Peter Weber; Matthias L. Schroeter

Attention-deficit hyperactivity disorder is a common finding in school children. Because it was suggested to be related to frontal lobe dysfunction, we hypothesized that brain activation would be altered during an event-related color-word matching Stroop task in comparison to a healthy control group. Twelve medication-free boys suffering from attention-deficit hyperactivity disorder were compared with 12 education- and age-matched healthy boys. As an imaging method we applied functional near-infrared spectroscopy, because it is particularly insensitive to movement artifacts and, accordingly, well suited for studies in children. Generally, the Stroop task led to activations in the lateral prefrontal cortex of both patients and control subjects. Moreover, data suggest that Stroop interference elicited (presumably compensatory) higher oxygen consumption and brain activation in the right dorsolateral prefrontal cortex of boys with attention-deficit hyperactivity disorder. This effect was not confounded by behavioral differences, because boys with attention-deficit hyperactivity disorder showed only a non-specifically increased reaction time in comparison with control subjects. In sum, our results indicate that attention-deficit hyperactivity disorder is characterized by functional impairments of the dorsolateral prefrontal cortex. Our study further establishes functional near-infrared spectroscopy as an imaging tool for studies in neurodevelopment and child and adolescent psychiatry.


NeuroImage | 2013

A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements

Fabio Scarpa; Sabrina Brigadoi; Simone Cutini; Pietro Scatturin; Marco Zorzi; Roberto Dell'Acqua; Giovanni Sparacino

Functional near-infrared spectroscopy (fNIRS) uses near-infrared light to measure cortical concentration changes in oxygenated (HbO) and deoxygenated hemoglobin (HbR) held to be correlated with cognitive activity. Providing a parametric depiction of such changes in the classic form of stimulus-evoked hemodynamic responses (HRs) can be attained with this technique only by solving two problems. One problem concerns the separation of informative optical signal from structurally analogous noise generated by a variety of spurious sources, such as heart beat, respiration, and vasomotor waves. Another problem pertains to the inherent variability of HRs, which is notoriously contingent on the type of experiment, brain region monitored, and human phenotype. A novel method was devised in the present context to solve both problems based on a two-step algorithm combining the treatment of noise-only data extrapolated from a reference-channel and a Bayesian filter applied on a per-trial basis. The present method was compared to two current methods based on conventional averaging, namely, a typical averaging method and an averaging method implementing the use of a reference-channel. The result of the comparison, carried out both on artificial and real data, revealed a sensitive accuracy improvement in HR estimation using the present method relative to each of the other methods.


NeuroImage | 2014

Are the neural correlates of subitizing and estimation dissociable? An fNIRS investigation

Simone Cutini; Pietro Scatturin; Sara Basso Moro; Marco Zorzi

Human performance in visual enumeration tasks typically shows two distinct patterns as a function of set size. For small sets, usually up to 4 items, numerosity judgments are extremely rapid, precise and confident, a phenomenon known as subitizing. When this limit is exceeded and serial counting is precluded, exact enumeration gives way to estimation: performance becomes error-prone and more variable. Surprisingly, despite the importance of subitizing and estimation in numerical cognition, only few neuroimaging studies have examined whether the neural activity related to these two phenomena can be dissociated. In the present work, we used multi-channel near-infrared spectroscopy (fNIRS) to measure hemodynamic activity of the bilateral parieto-occipital cortex during a visual enumeration task. Participants had to judge the numerosity of dot arrays and indicate it by means of verbal response. We observed a different hemodynamic pattern in the parietal cortex, both in terms of amplitude modulation and temporal profile, for numerosities below and beyond the subitizing range. Crucially, the neural dissociation between subitizing and estimation was strongest at the level of right IPS. The present findings confirm that fNIRS can be successfully used to detect subtle temporal differences in hemodynamic activity and to produce inferences on the neural mechanisms underlying cognitive functions.


Journal of Neuroscience Methods | 2014

Unleashing the future potential of functional near-infrared spectroscopy in brain sciences

Simone Cutini; Sabrina Brigadoi

The wondrous innovations bound to the introduction of functional near-infrared spectroscopy in cognitive neuroscience are characterized by a multifaceted nature, ranging from technological improvements to sophisticated signal processing methods; the outstanding progress enabled scientists to investigate a variety of hard-to-test clinical populations and to successfully employ optical imaging in fields that were almost unimaginable twenty years ago. Here we illustrate how the emerging use of fNIRS methodologies might represent a drawing power in a variety of challenging experimental and medical contexts; we expect in the near future a wide increase of the use of wireless fNIRS, especially in children and in particular clinical populations, as well as a striking progress of fNIRS-BCI and hybrid BCI systems for neurofeedback and neurorehabilitation. These emerging trends might dramatically foster the future potential of fNIRS in brain sciences, provided that they are properly supported by a significant progress in signal processing and cognitive neuroscience.

Collaboration


Dive into the Simone Cutini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge