Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Degan is active.

Publication


Featured researches published by Simone Degan.


Biomedical Optics Express | 2011

In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature

Thomas E. Matthews; Jesse W. Wilson; Simone Degan; Mary Jane Simpson; Jane Y. Jin; Jennifer Y. Zhang; Warren S. Warren

We performed epi-mode pump-probe imaging of melanin in excised human pigmented lesions and both hemoglobin and melanin in live xenograft mouse melanoma models to depths greater than 100 µm. Eumelanin and pheomelanin images, which have been previously demonstrated to differentiate melanoma from benign lesions, were acquired at the dermal-epidermal junction with cellular resolution and modest optical powers (down to 15 mW). We imaged dermal microvasculature with the same wavelengths, allowing simultaneous acquisition of melanin, hemoglobin and multiphoton autofluorescence images. Molecular pump-probe imaging of melanocytes, skin structure and microvessels allows comprehensive, non-invasive characterization of pigmented lesions.


Journal of Biological Chemistry | 2009

Counteracting signaling activities in lipid rafts associated with the invasion of lung epithelial cells by Pseudomonas aeruginosa

David Zaas; Zachary Swan; Bj Brown; Guojie Li; Scott H. Randell; Simone Degan; Mary E. Sunday; Jo Rae Wright; Soman N. Abraham

Pseudomonas aeruginosa has the capacity to invade lung epithelial cells by co-opting the intrinsic endocytic properties of lipid rafts, which are rich in cholesterol, sphingolipids, and proteins, such as caveolin-1 and -2. We compared intratracheal Pseudomonas infection in wild type and caveolin-deficient mice to investigate the role of caveolin proteins in the pathogenesis of Pseudomonas pneumonia. Unlike wild type mice, which succumb to pneumonia, caveolin-deficient mice are resistant to Pseudomonas. We observed that Pseudomonas invasion of lung epithelial cells is dependent on caveolin-2 but not caveolin-1. Phosphorylation of caveolin-2 by Src family kinases is an essential event for Pseudomonas invasion. Our studies also reveal the existence of a distinct signaling mechanism in lung epithelial cells mediated by COOH-terminal Src kinase (Csk) that negatively regulates Pseudomonas invasion. Csk migrates to lipid raft domains, where it decreases phosphorylation of caveolin-2 by inactivating c-Src. Whereas Pseudomonas co-opts the endocytic properties of caveolin-2 for invasion, there also exists in these cells an intrinsic Csk-dependent cellular defense mechanism aimed at impairing this activity. The success of Pseudomonas in co-opting lipid raft-mediated endocytosis to invade lung epithelial cells may depend on the relative strengths of these counteracting signaling activities.


American Journal of Respiratory and Critical Care Medicine | 2011

Airway fibroblasts in asthma manifest an invasive phenotype.

Jennifer L. Ingram; Molly J. Huggins; Tony D. Church; Yuejuan Li; Dave Francisco; Simone Degan; Rafael Firszt; Denise Beaver; Njira L Lugogo; Ying Wang; Mary E. Sunday; Paul W. Noble; Monica Kraft

RATIONALE Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs. OBJECTIVES We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls. METHODS Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels. MEASUREMENTS AND MAIN RESULTS IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects. CONCLUSIONS IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.


PLOS ONE | 2013

In Vivo Noninvasive Detection of Brown Adipose Tissue through Intermolecular Zero-Quantum MRI

Rosa T. Branca; Le Zhang; Warren S. Warren; Edward J. Auerbach; Arjun Khanna; Simone Degan; Kamil Ugurbil; Robert R. Maronpot

The recent discovery of active Brown Adipose Tissue (BAT) in adult humans has opened new avenues for obesity research and treatment, as reduced BAT activity seem to be implicated in human energy imbalance, diabetes, and hypertension. However, clinical applications are currently limited by the lack of non-invasive tools for measuring mass and function of this tissue in humans. Here we present a new magnetic resonance imaging method based on the normally invisible intermolecular multiple-quantum coherence 1H MR signal. This method, which doesn’t require special hardware modifications, can be used to overcome partial volume effect, the major limitation of MR-based approaches that are currently being investigated for the detection of BAT in humans. With this method we can exploit the characteristic cellular structure of BAT to selectively image it, even when (as in humans) it is intimately mixed with other tissues. We demonstrate and validate this method in mice using PET scans and histology. We compare this methodology with conventional 1H MR fat fraction methods. Finally, we investigate its feasibility for the detection of BAT in humans.


American Journal of Respiratory and Critical Care Medicine | 2011

c-Kit Is Essential for Alveolar Maintenance and Protection from Emphysema-like Disease in Mice

James Y. Lindsey; Koustav Ganguly; David M. Brass; Zhuowei Li; Erin N. Potts; Simone Degan; Huaiyong Chen; Brian Brockway; Soman N. Abraham; Annerose Berndt; Barry R. Stripp; W. Michael Foster; George D. Leikauf; Holger Schulz; John W. Hollingsworth

RATIONALE Previously, we demonstrated a candidate region for susceptibility to airspace enlargement on mouse chromosome 5. However, the specific candidate genes within this region accounting for emphysema-like changes remain unrecognized. c-Kit is a receptor tyrosine kinase within this candidate gene region that has previously been recognized to contribute to the survival, proliferation, and differentiation of hematopoietic stem cells. Increases in the percentage of cells expressing c-Kit have previously been associated with protection against injury-induced emphysema. OBJECTIVES Determine whether genetic variants of c-Kit are associated with spontaneous airspace enlargement. METHODS Perform single-nucleotide polymorphism association studies in the mouse strains at the extremes of airspace enlargement phenotype for variants in c-Kit tyrosine kinase. Characterize mice bearing functional variants of c-Kit compared with wild-type controls for the development of spontaneous airspace enlargement. Epithelial cell proliferation was measured in culture. MEASUREMENTS AND MAIN RESULTS Upstream regulatory single-nucleotide polymorphisms in the divergent mouse strains were associated with the lung compliance difference observed between the extreme strains. c-Kit mutant mice (Kit(W-sh)/(W-sh)), when compared with genetic controls, developed altered lung histology, increased total lung capacity, increased residual volume, and increased lung compliance that persist into adulthood. c-Kit inhibition with imatinib attenuated in vitro proliferation of cells expressing epithelial cell adhesion molecule. CONCLUSIONS Our findings indicate that c-Kit sustains and/or maintains normal alveolar architecture in the lungs of mice. In vitro data suggest that c-Kit can regulate epithelial cell clonal expansion. The precise mechanisms that c-Kit contributes to the development of airspace enlargement and increased lung compliance remain unclear and warrants further investigation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Increased expression of senescence markers in cystic fibrosis airways

Bernard M. Fischer; Jessica K. Wong; Simone Degan; Apparao B. Kummarapurugu; Shuo Zheng; Prashamsha Haridass; Judith A. Voynow

Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16(INK4a) (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells.


British Journal of Pharmacology | 2012

Chronic treatment in vivo with β‐adrenoceptor agonists induces dysfunction of airway β2‐adrenoceptors and exacerbates lung inflammation in mice

Rui Lin; Simone Degan; Barbara S. Theriot; Bernard M. Fischer; Ryan T. Strachan; Jiurong Liang; Richard A. Pierce; Mary E. Sunday; Paul W. Noble; Monica Kraft; Arnold R. Brody; Julia Kl Walker

BACKGROUND AND PURPOSE Inhalation of a β‐adrenoceptor agonist (β‐agonist) is first‐line asthma therapy, used for both prophylaxis against, and acute relief of, bronchoconstriction. However, repeated clinical use of β‐agonists leads to impaired bronchoprotection and, in some cases, adverse patient outcomes. Mechanisms underlying this β2‐adrenoceptor dysfunction are not well understood, due largely to the lack of a comprehensive animal model and the uncertainty as to whether or not bronchorelaxation in mice is mediated by β2‐adrenoceptors. Thus, we aimed to develop a mouse model that demonstrated functional β‐agonist‐induced β2‐adrenoceptor desensitization in the context of allergic inflammatory airway disease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

NPAS3 is a trachealess homolog critical for lung development and homeostasis

Shutang Zhou; Simone Degan; Erin N. Potts; W. Michael Foster; Mary E. Sunday

Trachealess (Trh) is a PAS domain transcription factor regulating Drosophila tracheogenesis. No other Trh homolog has been associated with a respiratory phenotype. Seeking homolog(s) regulating lung development, we screened murine genomic DNA using trh oligonucleotides, identifying only Npas3. Npas3 mRNA peaks in lung from E10.5 to E13.5, verified by sequencing, with immunostaining in airway epithelial cells. Npas3-null mice have reduced lung branching morphogenesis but are viable prenatally. Npas3-null newborns die in respiratory distress, with diminished alveolarization, decreased Shh, Fgf9, Fgf10, and Bmp4 mRNAs, and increased Spry2, consistent with reduced FGF signaling. Exogenous FGF10 rescues branching morphogenesis in Npas3-null lungs. In promoter reporter assays, NPAS3 directly upregulates Shh and represses Spry2. Npas3+/− mice have a milder lung phenotype, surviving postnatally, but develop emphysema. Therefore, absence of a developmentally expressed transcription factor can alter downstream gene expression and multiple signaling pathways in organogenesis. NPAS3 haploinsufficiency may also lead to emphysema.


Journal of Immunology | 2009

SP-A Preserves Airway Homeostasis During Mycoplasma pneumoniae Infection in Mice

Julie G. Ledford; Hisatsugu Goto; Erin N. Potts; Simone Degan; Hong Wei Chu; Dennis R. Voelker; Mary E. Sunday; George J. Cianciolo; William M. Foster; Monica Kraft; Jo Rae Wright

The lung is constantly challenged during normal breathing by a myriad of environmental irritants and infectious insults. Pulmonary host defense mechanisms maintain homeostasis between inhibition/clearance of pathogens and regulation of inflammatory responses that could injure the airway epithelium. One component of this defense mechanism, surfactant protein-A (SP-A), exerts multifunctional roles in mediating host responses to inflammatory and infectious agents. SP-A has a bacteriostatic effect on Mycoplasma pneumoniae (Mp), which occurs by binding surface disaturated phosphatidylglycerols. SP-A can also bind the Mp membrane protein, MPN372. In this study, we investigated the role of SP-A during acute phase pulmonary infection with Mp using mice deficient in SP-A. Biologic responses, inflammation, and cellular infiltration, were much greater in Mp infected SP-A−/− mice than wild-type mice. Likewise, physiologic responses (airway hyperresponsiveness and lung compliance) to Mp infection were more severely affected in SP-A−/− mice. Both Mp-induced biologic and physiologic changes were attenuated by pharmacologic inhibition of TNF-α. Our findings demonstrate that SP-A is vital to preserving lung homeostasis and host defense to this clinically relevant strain of Mp by curtailing inflammatory cell recruitment and limiting an overzealous TNF-α response.


NMR in Biomedicine | 2014

3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis

Zackary I. Cleveland; Rohan S. Virgincar; Yi Qi; Scott H. Robertson; Simone Degan; Bastiaan Driehuys

A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood–gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) 129Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar 129Xe to be detected separately from 129Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because 129Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay 129Xe transit and, thus, reduce RBC‐specific 129Xe MR signal. Here we have exploited these properties to generate 3D, MR images of 129Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of 129Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved 129Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin‐treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline‐treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP 129Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening. Copyright

Collaboration


Dive into the Simone Degan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge