Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Dell’Acqua is active.

Publication


Featured researches published by Simone Dell’Acqua.


Inorganic Chemistry | 2013

Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites

Francesca Camponeschi; Daniela Valensin; Isabella Tessari; Luigi Bubacco; Simone Dell’Acqua; Luigi Casella; Enrico Monzani; Elena Gaggelli; Gianni Valensin

The aggregation of α-synuclein (αS) is a critical step in the etiology of Parkinsons disease. Metal ions such as copper and iron have been shown to bind αS, enhancing its fibrillation rate in vitro. αS is also susceptible to copper-catalyzed oxidation that involves the reduction of Cu(II) to Cu(I) and the conversion of O(2) into reactive oxygen species. The mechanism of the reaction is highly selective and site-specific and involves interactions of the protein with both oxidation states of the copper ion. The reaction can induce oxidative modification of the protein, which generally leads to extensive protein oligomerization and precipitation. Cu(II) binding to αS has been extensively characterized, indicating the N terminus and His-50 as binding donor residues. In this study, we have investigated αS-Cu(I) interaction by means of NMR and circular dichroism analysis on the full-length protein (αS(1-140)) and on two, designed ad hoc, model peptides: αS(1-15) and αS(113-130). In order to identify and characterize the metal binding environment in full-length αS, in addition to Cu(I), we have also used Ag(I) as a probe for Cu(I) binding. Two distinct Cu(I)/Ag(I) binding domains with comparable affinities have been identified. The structural rearrangements induced by the metal ions and the metal coordination spheres of both sites have been extensively characterized.


Biochemistry | 2008

Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome c552 from Pseudomonas nautica: Kinetic, Nuclear Magnetic Resonance, and Docking Studies †

Simone Dell’Acqua; Sofia R. Pauleta; Enrico Monzani; Alice S. Pereira; Luigi Casella; José J. G. Moura; Isabel Moura

The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.


Journal of Biological Inorganic Chemistry | 2011

The tetranuclear copper active site of nitrous oxide reductase: the CuZ center

Simone Dell’Acqua; Sofia R. Pauleta; Isabel Moura; José J. G. Moura

This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes, reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this enzyme, opened a novel area of research in metallobiochemistry. In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered, the CuZ center remains a scientific challenge, with many hypotheses still being formed.


Inorganic Chemistry | 2015

Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein

Riccardo De Ricco; Daniela Valensin; Simone Dell’Acqua; Luigi Casella; Pierre Dorlet; Peter Faller; Christelle Hureau

Parkinsons disease (PD) etiology is closely linked to the aggregation of α-synuclein (αS). Copper(II) ions can bind to αS and may impact its aggregation propensity. As a consequence, deciphering the exact mode of Cu(II) binding to αS is important in the PD context. Several previous reports have shown some discrepancies in the description of the main Cu(II) site in αS, which are resolved here by a new scenario. Three Cu(II) species can be encountered, depending on the pH and the Cu:αS ratio. At low pH, Cu(II) is bound to the N-terminal part of the protein by the N-terminal amine, the adjacent deprotonated amide group of the Asp2 residue, and the carboxylate group from the side chain of the same Asp2. At pH 7.4, the imidazole group of remote His50 occupies the fourth labile equatorial position of the previous site. At high Cu(II):αS ratio (>1), His50 leaves the coordination sphere of the first Cu site centered at the N-terminus, because a second weak affinity site centered on His50 is now filled with Cu(II). In this new scheme, the remote His plays the role of a molecular switch and it can be anticipated that the binding of the remote His to the Cu(II) ion can induce different folding of the αS protein, having various aggregation propensity.


Inorganic Chemistry | 2015

Differences in the Binding of Copper(I) to α- and β-Synuclein

Riccardo De Ricco; Daniela Valensin; Simone Dell’Acqua; Luigi Casella; Elena Gaggelli; Gianni Valensin; Luigi Bubacco; Stefano Mangani

Parkinsons disease (PD) is a neurodegenerative disorder characterized by the presence of abnormal α-synuclein (αS) deposits in the brain. Alterations in homeostasis and metal-induced oxidative stress may play a crucial role in the progression of αS amyloid assembly and pathogenesis of PD. Contrary to αS, β-synuclein (βS) is not involved in the PD etiology. However, it has been suggested that the βS/αS ratio is altered in PD, indicating that a correct balance of these two proteins is implicated in the inhibition of αS aggregation. αS and βS share similar abilities to coordinate Cu(II). In this study, we investigated and compared the interaction of Cu(I) with the N-terminal portion of βS and αS by means of NMR, circular dichroism, and X-ray absorption spectroscopies. Our data show the importance of M10K mutation, which induces different Cu(I) chemical environments. Coordination modes 3S1O and 2S2O were identified for βS and αS, respectively. These new insights into the bioinorganic chemistry of copper and synuclein proteins are a basis to understand the molecular mechanism by which βS might inhibit αS aggregation.


Inorganic Chemistry | 2016

Copper(I) Forms a Redox-Stable 1:2 Complex with α-Synuclein N-Terminal Peptide in a Membrane-Like Environment

Simone Dell’Acqua; Valentina Pirota; Enrico Monzani; Francesca Camponeschi; Riccardo De Ricco; Daniela Valensin; Luigi Casella

α-Synuclein (αS) is the main protein component of Lewy bodies, characterizing the pathogenesis of Parkinsons disease. αS is unstructured in solution but adopts a helical structure in its extended N-terminal segment upon association with membranes. In vitro the protein binds avidly Cu(II), but in vivo the protein is N-acetylated, and Cu(II) binding is lost. We have now clarified the binding characteristics of the Cu(I) complex with the truncated αS peptide 1-15, both in N-acetylated and free amine forms, in a membrane mimetic environment and found that complexation occurs with a 1:2 Cu(I)-αS stoichiometry, where Cu(I) is bound to Met1 and Met5 residues of two helical peptide chains. The resulting tetrahedral Cu(I) center is redox-stable, does not form reactive oxygen species, and is unreactive against dopamine in the presence of O2. This suggests that, unlike cytosolic Cu(I)-αS, which retains the capacity to activate O2 and promote oxidative reactions, membrane-bound Cu(I)-αS may serve as a sink for unreactive copper.


Journal of the American Chemical Society | 2017

Spectroscopic Definition of the CuZ° Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism

Esther M. Johnston; Cíntia Carreira; Simone Dell’Acqua; Somdatta Ghosh Dey; Sofia R. Pauleta; Isabel Moura; Edward I. Solomon

Spectroscopic methods and density functional theory (DFT) calculations are used to determine the geometric and electronic structure of CuZ°, an intermediate form of the Cu4S active site of nitrous oxide reductase (N2OR) that is observed in single turnover of fully reduced N2OR with N2O. Electron paramagnetic resonance (EPR), absorption, and magnetic circular dichroism (MCD) spectroscopies show that CuZ° is a 1-hole (i.e., 3CuICuII) state with spin density delocalized evenly over CuI and CuIV. Resonance Raman spectroscopy shows two Cu-S vibrations at 425 and 413 cm-1, the latter with a -3 cm-1 O18 solvent isotope shift. DFT calculations correlated to these spectral features show that CuZ° has a terminal hydroxide ligand coordinated to CuIV, stabilized by a hydrogen bond to a nearby lysine residue. CuZ° can be reduced via electron transfer from CuA using a physiologically relevant reductant. We obtain a lower limit on the rate of this intramolecular electron transfer (IET) that is >104 faster than the unobserved IET in the resting state, showing that CuZ° is the catalytically relevant oxidized form of N2OR. Terminal hydroxide coordination to CuIV in the CuZ° intermediate yields insight into the nature of N2O binding and reduction, specifying a molecular mechanism in which N2O coordinates in a μ-1,3 fashion to the fully reduced state, with hydrogen bonding from Lys397, and two electrons are transferred from the fully reduced μ4S2- bridged tetranuclear copper cluster to N2O via a single Cu atom to accomplish N-O bond cleavage.


Molecules | 2016

Predicting Protein-Protein Interactions Using BiGGER: Case Studies

Rui M. Almeida; Simone Dell’Acqua; Ludwig Krippahl; José J. G. Moura; Sofia R. Pauleta

The importance of understanding interactomes makes preeminent the study of protein interactions and protein complexes. Traditionally, protein interactions have been elucidated by experimental methods or, with lower impact, by simulation with protein docking algorithms. This article describes features and applications of the BiGGER docking algorithm, which stands at the interface of these two approaches. BiGGER is a user-friendly docking algorithm that was specifically designed to incorporate experimental data at different stages of the simulation, to either guide the search for correct structures or help evaluate the results, in order to combine the reliability of hard data with the convenience of simulations. Herein, the applications of BiGGER are described by illustrative applications divided in three Case Studies: (Case Study A) in which no specific contact data is available; (Case Study B) when different experimental data (e.g., site-directed mutagenesis, properties of the complex, NMR chemical shift perturbation mapping, electron tunneling) on one of the partners is available; and (Case Study C) when experimental data are available for both interacting surfaces, which are used during the search and/or evaluation stage of the docking. This algorithm has been extensively used, evidencing its usefulness in a wide range of different biological research fields.


Archive | 2016

CHAPTER 11:Electron Transfer and Molecular Recognition in Denitrification and Nitrate Dissimilatory Pathways

Rui M. Almeida; Simone Dell’Acqua; Isabel Moura; Sofia R. Pauleta; José J. G. Moura

The electron transfer pathways for the enzymes involved in the four sequential steps of the denitrification pathway are reviewed. In addition, brief information on the electron transfer events is also provided on two enzymes that participate in the dissimilatory nitrate reduction to ammonia. The two main aspects discussed are the intra- and inter-molecular electron transfer pathways and the molecular recognition processes involving the redox partners. When available, information on the residues that are involved in these pathways is given, and their role in electron transfer and/or the formation of the transient electron transfer complexes is discussed.


Inorganic Chemistry | 2017

Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress

Simone Dell’Acqua; Chiara Bacchella; Enrico Monzani; Stefania Nicolis; Giuseppe Di Natale; Enrico Rizzarelli; Luigi Casella

Copper(II) binding to prion peptides does not prevent Cu redox cycling and formation of reactive oxygen species (ROS) in the presence of reducing agents. The toxic effects of these species are exacerbated in the presence of catecholamines, indicating that dysfunction of catecholamine vesicular sequestration or recovery after synaptic release is a dangerous amplifier of Cu induced oxidative stress. Cu bound to prion peptides including the high affinity site involving histidines adjacent to the octarepeats exhibits marked catalytic activity toward dopamine and 4-methylcatechol. The resulting quinone oxidation products undergo parallel oligomerization and endogenous peptide modification yielding catechol adducts at the histidine binding ligands. These modifications add to the more common oxidation of Met and His residues produced by ROS. Derivatization of Cu-prion peptides is much faster than that undergone by Cu-β-amyloid and Cu-α-synuclein complexes in the same conditions.

Collaboration


Dive into the Simone Dell’Acqua's collaboration.

Top Co-Authors

Avatar

Sofia R. Pauleta

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Isabel Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José J. G. Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui M. Almeida

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge