Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Diego Castellarin is active.

Publication


Featured researches published by Simone Diego Castellarin.


Planta | 2007

Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries.

Simone Diego Castellarin; Mark A. Matthews; Gabriele Di Gaspero; Gregory A. Gambetta

Water deficits consistently promote higher concentrations of anthocyanins in red winegrapes and their wines. However, controversy remains as to whether there is any direct effect on berry metabolism other than inhibition of growth. Early (ED) and late (LD) season water deficits, applied before or after the onset of ripening (veraison), were imposed on field grown Vitis vinifera “Cabernet Sauvignon”, and the responses of gene expression in the flavonoid pathway and their corresponding metabolites were determined. ED accelerated sugar accumulation and the onset of anthocyanin synthesis. Both ED and LD increased anthocyanin accumulation after veraison. Expression profiling revealed that the increased anthocyanin accumulation resulted from earlier and greater expression of the genes controlling flux through the anthocyanin biosynthetic pathway, including F3H, DFR, UFGT and GST. Increases in total anthocyanins resulted predominantly from an increase of 3′4′5′-hydroxylated forms through the differential regulation of F3′H and F3′5′H. There were limited effects on proanthocyanidin, other flavonols, and on expression of genes committed to their synthesis. These results demonstrate that manipulation of abiotic stress through applied water deficits not only modulates compositional changes during berry ripening, but also alters the timing of particular aspects of the ripening process.


International Journal of Molecular Sciences | 2013

Berry Phenolics of Grapevine under Challenging Environments

António Teixeira; José Eiras-Dias; Simone Diego Castellarin; Hernâni Gerós

Plant phenolics have been for many years a theme of major scientific and applied interest. Grape berry phenolics contribute to organoleptic properties, color and protection against environmental challenges. Climate change has already caused significant warming in most grape-growing areas of the world, and the climatic conditions determine, to a large degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, thus, grape composition and development. In the variety Chardonnay, water stress increases the content of flavonols and decreases the expression of genes involved in biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental interactions. This review deals with the diversity and biosynthesis of phenolic compounds in the grape berry, from a general overview to a more detailed level, where the influence of environmental challenges on key phenolic metabolism pathways is approached. The full understanding of how and when specific phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism responds to the environment is of utmost importance to adjust agricultural practices and thus, modify wine profile.


Planta | 2010

Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape

Gregory A. Gambetta; Mark A. Matthews; Tarana H. Shaghasi; Andrew J. McElrone; Simone Diego Castellarin

The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit.


Journal of Experimental Botany | 2011

Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis

Simone Diego Castellarin; Greg A. Gambetta; Hiroshi Wada; Kenneth A. Shackel; Mark A. Matthews

This study reports the first observations indicating the spatiotemporal relationships among genetic and physiological aspects of ripening in the berry of Vitis vinifera. At the onset of ripening in the red flesh variety Alicante Bouschet, colour development began in the flesh at the stylar end of the fruit and progressed toward the pedicel end flesh and into the skin. Tissue solute potential and cell turgor also decreased first in the flesh. The decrease in flesh solute potential was due to accumulation of sugars, glucose and fructose, an accumulation that is integral to ripening. Expression of the anthocyanin biosynthesis-related genes VvMybA and VvUFGT was linearly related to the decrease in solute potential. Expression of VvMybA, and to a lesser extent VvUFGT, was correspondingly low in green tissue, higher in the red, stylar end flesh of berries beginning to ripen, and greatest in red berries. In contrast, expression of the abscisic acid biosynthesis-related genes VvNCED1 and VvNCED2 was not correlated with the other spatiotemporal aspects of the onset of ripening. These results, together with earlier work showing that sugar accumulation and acid loss also begin in the stylar flesh in other varieties, indicate that ripening in the grape berry originates in the stylar end flesh.


BMC Plant Biology | 2016

Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.)

Stefania Savoi; Darren C. J. Wong; Panagiotis Arapitsas; Mara Miculan; Barbara Bucchetti; Enrico Peterlunger; Aaron Fait; Fulvio Mattivi; Simone Diego Castellarin

BackgroundSecondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown.ResultsIn this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stages—before, at the onset, and at late ripening—indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched drought-responsive elements in the promoter regions of those genes as part of the grapes response to drought.ConclusionOur study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory features.


Journal of Experimental Botany | 2016

Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth

Simone Diego Castellarin; Gregory A. Gambetta; Hiroshi Wada; Mark N. Krasnow; Grant R. Cramer; Enrico Peterlunger; Kenneth A. Shackel; Mark A. Matthews

Highlight The earliest events in ripening are decreases in turgor, softening, and increases in abscisic acid. Later events integral to regulating colour development include growth, further increases in abscisic acid, and sugar accumulation.


DNA Research | 2016

A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation

Darren Chern Jan Wong; Rudolf Schlechter; Alessandro Vannozzi; Janine Höll; Ibrahim Hmmam; Jochen Bogs; Giovanni Battista Tornielli; Simone Diego Castellarin; José Tomás Matus

R2R3-MYB transcription factors (TFs) belong to a large and functionally diverse protein superfamily in plants. In this study, we explore the evolution and function of this family in grapevine (Vitis vinifera L.), a high-value fruit crop. We identified and manually curated 134 genes using RNA-Seq data, and named them systematically according to the Super-Nomenclature Committee. We identified novel genes, splicing variants and grapevine/woody-specific duplicated subgroups, suggesting possible neo- and sub-functionalization events. Regulatory network analysis ascribed biological functions to uncharacterized genes and validated those of known genes (e.g. secondary cell wall biogenesis and flavonoid biosynthesis). A comprehensive analysis of different MYB binding motifs in the promoters of co-expressed genes predicted grape R2R3-MYB binding preferences and supported evidence for putative downstream targets. Enrichment of cis-regulatory motifs for diverse TFs reinforced the notion of transcriptional coordination and interaction between MYBs and other regulators. Analysis of the network of Subgroup 2 showed that the resveratrol-related VviMYB14 and VviMYB15 share common co-expressed STILBENE SYNTHASE genes with the uncharacterized VviMYB13. These regulators have distinct expression patterns within organs and in response to biotic and abiotic stresses, suggesting a pivotal role of VviMYB13 in regulating stilbene accumulation in vegetative tissues and under biotic stress conditions.


Journal of Experimental Botany | 2016

The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment

Rodrigo Loyola; Daniela Herrera; Abraham Mas; Darren Chern Jan Wong; Janine Höll; Erika Cavallini; Alessandra Amato; Akifumi Azuma; Tobias Ziegler; Felipe Aquea; Simone Diego Castellarin; Jochen Bogs; Giovanni Battista Tornielli; Álvaro Peña-Neira; Stefan Czemmel; José Antonio Alcalde; José Tomás Matus; Patricio Arce-Johnson

By performing molecular studies coupled to radiation experiments and in silico systems analyses, we have ascertained the role of the grapevine UV-B receptor and two HY5 homologues in regulating flavonol synthesis.


Planta | 2012

Expression of flavonoid genes in the red grape berry of ‘Alicante Bouschet’ varies with the histological distribution of anthocyanins and their chemical composition

Luigi Falginella; Gabriele Di Gaspero; Simone Diego Castellarin

The mature berry of Vitis vinifera ‘Alicante Bouschet’ is entirely red, but anthocyanin metabolism discloses elements of histological discontinuity. This provides an experimental system amenable to studies of compartmentalised secondary metabolism in a fleshly fruit. We compared microscopy of fixed berry sections and chemical composition of anthocyanin extracts with the expression of 41 flavonoid genes in three berry tissues. In the pericarp, anthocyanins formed membrane-encased spherical coalescences that gradually enlarged and were shuttled into the vacuolar system. The size and the intensity of in situ pigmentation and of colour extracts of anthocyanin vesicles all decreased with depth beneath the epidermis. Shades of red colour, and the quantity and types of anthocyanins in skin, flesh, and seed extracts were correlated with differences in the expression of flavonoid 3′,5′-hydroxylases and anthocyanin genes encoding transcription factors, enzymatic proteins, and transporters. Fine adjustments in the global transcriptional modulation of the pathway occurred distinctively in each tissue, within four groups of co-expressed genes that were more associated with either the pericarp or the seed, and with either early or late-ripening stages. All structural genes controlling early steps of the flavonoid pathway exist in the grapevine genome in multiple copies that were recruited by antagonistic branches of the pathway in the ‘Alicante Bouschet’ berry. Expression patterns of individual paralogs were spatiotemporally distinct from one another, in step with either anthocyanin genes or proanthocyanidin genes.


DNA Research | 2017

Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine

Darren Chern Jan Wong; Rodrigo Lopez Gutierrez; Gregory A Gambetta; Simone Diego Castellarin

Abstract Coordinated transcriptional and metabolic reprogramming ensures a plant’s continued growth and survival under adverse environmental conditions. Transcription factors (TFs) act to modulate gene expression through complex cis-regulatory element (CRE) interactions. Genome-wide analysis of known plant CREs was performed for all currently predicted protein-coding gene promoters in grapevine (Vitis vinifera L.). Many CREs such as abscisic acid (ABA)-responsive, drought-responsive, auxin-responsive, and evening elements, exhibit bona fide CRE properties such as strong position bias towards the transcription start site (TSS) and over-representation when compared with random promoters. Genes containing these CREs are enriched in a large repertoire of plant biological pathways. Large-scale transcriptome analyses also show that these CREs are highly implicated in grapevine development and stress response. Numerous CRE-driven modules in condition-specific gene co-expression networks (GCNs) were identified and many of these modules were highly enriched for plant biological functions. Several modules corroborate known roles of CREs in drought response, pathogen defense, cell wall metabolism, and fruit ripening, whereas others reveal novel functions in plants. Comparisons with Arabidopsis suggest a general conservation in promoter architecture, gene expression dynamics, and GCN structure across species. Systems analyses of CREs provide insights into the grapevine cis-regulatory code and establish a foundation for future genomic studies in grapevine.

Collaboration


Dive into the Simone Diego Castellarin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Sabbatini

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge