Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Ecker is active.

Publication


Featured researches published by Simone Ecker.


Nature Genetics | 2012

Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia.

Marta Kulis; Simon Heath; Marina Bibikova; Ana C. Queirós; Alba Navarro; Guillem Clot; Alejandra Martínez-Trillos; Giancarlo Castellano; Isabelle Brun-Heath; Magda Pinyol; Sergio Barberán-Soler; Panagiotis Papasaikas; Pedro Jares; Sílvia Beà; Daniel Rico; Simone Ecker; Miriam Rubio; Romina Royo; Vincent T. Ho; Brandy Klotzle; Lluis Hernández; Laura Conde; Mónica López-Guerra; Dolors Colomer; Neus Villamor; Marta Aymerich; María Rozman; Mònica Bayés; Marta Gut; Josep Lluís Gelpí

We have extensively characterized the DNA methylomes of 139 patients with chronic lymphocytic leukemia (CLL) with mutated or unmutated IGHV and of several mature B-cell subpopulations through the use of whole-genome bisulfite sequencing and high-density microarrays. The two molecular subtypes of CLL have differing DNA methylomes that seem to represent epigenetic imprints from distinct normal B-cell subpopulations. DNA hypomethylation in the gene body, targeting mostly enhancer sites, was the most frequent difference between naive and memory B cells and between the two molecular subtypes of CLL and normal B cells. Although DNA methylation and gene expression were poorly correlated, we identified gene-body CpG dinucleotides whose methylation was positively or negatively associated with expression. We have also recognized a DNA methylation signature that distinguishes new clinico-biological subtypes of CLL. We propose an epigenomic scenario in which differential methylation in the gene body may have functional and clinical implications in leukemogenesis.


Genome Research | 2014

Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia

Pedro G. Ferreira; Pedro Jares; Daniel Rico; Gonzalo Gómez-López; Alejandra Martínez-Trillos; Neus Villamor; Simone Ecker; Abel Gonzalez-Perez; David G. Knowles; Jean Monlong; Rory Johnson; Víctor Quesada; Sarah Djebali; Panagiotis Papasaikas; Mónica López-Guerra; Dolors Colomer; Cristina Royo; Maite Cazorla; Magda Pinyol; Guillem Clot; Marta Aymerich; María Rozman; Marta Kulis; David Tamborero; Anaı̈s Gouin; Julie Blanc; Marta Gut; Ivo Gut; Xose S. Puente; David G. Pisano

Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.


Nature Genetics | 2015

Whole-genome fingerprint of the DNA methylome during human B cell differentiation.

Marta Kulis; Angelika Merkel; Simon Heath; Ana C. Queirós; Ronald Schuyler; Giancarlo Castellano; Renée Beekman; Emanuele Raineri; Anna Esteve; Guillem Clot; Néria Verdaguer-Dot; Martí Duran-Ferrer; Nuria Russiñol; Roser Vilarrasa-Blasi; Simone Ecker; Vera Pancaldi; Daniel Rico; Lidia Agueda; Julie Blanc; David C. Richardson; Laura Clarke; Avik Datta; Marien Pascual; Xabier Agirre; Felipe Prosper; Diego Alignani; Bruno Paiva; Gersende Caron; Thierry Fest; Marcus O. Muench

We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.


Cell | 2016

Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

Lu Chen; Bing Ge; Francesco Paolo Casale; Louella Vasquez; Tony Kwan; Diego Garrido-Martín; Stephen Watt; Ying Yan; Kousik Kundu; Simone Ecker; Avik Datta; David C. Richardson; Frances Burden; Daniel Mead; Alice L. Mann; José María Fernández; Sophia Rowlston; Steven P. Wilder; Samantha Farrow; Xiaojian Shao; John J. Lambourne; Adriana Redensek; Cornelis A. Albers; Vyacheslav Amstislavskiy; Sofie Ashford; Kim Berentsen; Lorenzo Bomba; Guillaume Bourque; David Bujold; Stephan Busche

Summary Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Nature Communications | 2016

Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

Dirk S. Paul; Andrew E. Teschendorff; Mary A N Dang; Robert Lowe; Mohammed I. Hawa; Simone Ecker; Huriya Beyan; Stephanie Cunningham; Alexandra R. Fouts; Anita Ramelius; Frances Burden; Samantha Farrow; Sophia Rowlston; Karola Rehnström; Mattia Frontini; Kate Downes; Stephan Busche; Warren Cheung; Bing Ge; Marie Michelle Simon; David Bujold; Tony Kwan; Guillaume Bourque; Avik Datta; Ernesto Lowy; Laura Clarke; Paul Flicek; Emanuele Libertini; Simon Heath; Marta Gut

The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.


Genome Biology | 2017

Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types

Simone Ecker; Lu Chen; Vera Pancaldi; Frederik Otzen Bagger; José María Fernández; Enrique Carrillo de Santa Pau; David Juan; Alice L. Mann; Stephen Watt; Francesco Paolo Casale; Nikos Sidiropoulos; Nicolas Rapin; Angelika Merkel; Hendrik G. Stunnenberg; Oliver Stegle; Mattia Frontini; Kate Downes; Tomi Pastinen; Taco W. Kuijpers; Daniel Rico; Alfonso Valencia; Stephan Beck; Nicole Soranzo; Dirk S. Paul

BackgroundA healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability.ResultsWe apply a novel analytical approach to measure and compare transcriptional and epigenetic variability genome-wide across CD14+CD16− monocytes, CD66b+CD16+ neutrophils, and CD4+CD45RA+ naïve T cells from the same 125 healthy individuals. We discover substantially increased variability in neutrophils compared to monocytes and T cells. In neutrophils, genes with hypervariable expression are found to be implicated in key immune pathways and are associated with cellular properties and environmental exposure. We also observe increased sex-specific gene expression differences in neutrophils. Neutrophil-specific DNA methylation hypervariable sites are enriched at dynamic chromatin regions and active enhancers.ConclusionsOur data highlight the importance of transcriptional and epigenetic variability for the key role of neutrophils as the first responders to inflammatory stimuli. We provide a resource to enable further functional studies into the plasticity of immune cells, which can be accessed from: http://blueprint-dev.bioinfo.cnio.es/WP10/hypervariability.


Genome Medicine | 2015

Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia

Simone Ecker; Vera Pancaldi; Daniel Rico; Alfonso Valencia

BackgroundChronic lymphocytic leukemia (CLL) presents two subtypes which have drastically different clinical outcomes, IgVH mutated (M-CLL) and IgVH unmutated (U-CLL). So far, these two subtypes are not associated to clear differences in gene expression profiles. Interestingly, recent results have highlighted important roles for heterogeneity, both at the genetic and at the epigenetic level in CLL progression.MethodsWe analyzed gene expression data of two large cohorts of CLL patients and quantified expression variability across individuals to investigate differences between the two subtypes using different measures and statistical tests. Functional significance was explored by pathway enrichment and network analyses. Furthermore, we implemented a random forest approach based on expression variability to classify patients into disease subtypes.ResultsWe found that U-CLL, the more aggressive type of the disease, shows significantly increased variability of gene expression across patients and that, overall, genes that show higher variability in the aggressive subtype are related to cell cycle, development and inter-cellular communication. These functions indicate a potential relation between gene expression variability and the faster progression of this CLL subtype. Finally, a classifier based on gene expression variability was able to correctly predict the disease subtype of CLL patients.ConclusionsThere are strong relations between gene expression variability and disease subtype linking significantly increased expression variability to phenotypes such as aggressiveness and resistance to therapy in CLL.


BioEssays | 2018

Epigenetic and Transcriptional Variability Shape Phenotypic Plasticity

Simone Ecker; Vera Pancaldi; Alfonso Valencia; Stephan Beck; Dirk S. Paul

Epigenetic and transcriptional variability contribute to the vast diversity of cellular and organismal phenotypes and are key in human health and disease. In this review, we describe different types, sources, and determinants of epigenetic and transcriptional variability, enabling cells and organisms to adapt and evolve to a changing environment. We highlight the latest research and hypotheses on how chromatin structure and the epigenome influence gene expression variability. Further, we provide an overview of challenges in the analysis of biological variability. An improved understanding of the molecular mechanisms underlying epigenetic and transcriptional variability, at both the intra‐ and inter‐individual level, provides great opportunity for disease prevention, better therapeutic approaches, and personalized medicine.


Epigenomics | 2017

Epigenetic variation taking center stage in immunological research

Simone Ecker; Stephan Beck

The recent publication of a collection of 41 papers by the International Human Epigenome Consortium (IHEC) [1] has shed exciting new light on epigenomes and epigenetic mechanisms in health and disease [2,3]. The majority of these publications focused on different aspects of immune biology which was the main topic of BLUEPRINT [4], the European contribution to IHEC. BLUEPRINT generated over 100 complete and over 1000 partial reference epigenomes of healthy and diseased blood cells [5,6], and tackled many functional and mechanistic questions [2]. Here, we highlight six studies of the collection addressing three questions fundamental to the wider research community with interest in immunity and epigenomics: what is the level of natural epigenetic variation in blood cells? What is the effect of the microenvironment or residency on the epigenome of blood cells? What is the cell type of origin in hematological malignancies?


bioRxiv | 2018

PGP-UK: a research and citizen science hybrid project in support of personalized medicine

Stephan Beck; Alison M Berner; Graham R. Bignell; Maggie Bond; Martin J Callanan; Olga Chervova; Lucia Conde; Manuel Corpas; Simone Ecker; Hannah R Elliott; Silvana A Fioramonti; Adrienne M. Flanagan; Ricarda Gaentzsch; David Graham; Deirdre Gribbin; José Afonso Guerra-Assunção; Rifat Hamoudi; Vincent Harding; Paul L Harrison; Javier Herrero; Jana Hofmann; Erica Jones; Saif Khan; Jane Kaye; Polly Kerr; Emanuele Libertini; Laura McCormack; Ismail Moghul; Nikolas Pontikos; Sharmini Rajanayagam

Molecular analyses such as whole-genome sequencing have become routine and are expected to be transformational for future healthcare and lifestyle decisions. Population-wide implementation of such analyses is, however, not without challenges, and multiple studies are ongoing to identify what these are and explore how they can be addressed. Defined as a research project, the Personal Genome Project UK (PGP-UK) is part of the global PGP network and focuses on open data sharing and citizen science to advance and accelerate personalized genomics and medicine. Here we report our findings on using an open consent recruitment protocol, active participant involvement, open access release of personal genome, methylome and transcriptome data and associated analyses, including 47 new variants predicted to affect gene function and innovative reports based on the analysis of genetic and epigenetic variants. For this pilot study, we recruited ten participants willing to actively engage as citizen scientists with the project. In addition, we introduce Genome Donation as a novel mechanism for openly sharing previously restricted data and discuss the first three donations received. Lastly, we present GenoME, a free, open-source educational app suitable for the lay public to allow exploration of personal genomes. Our findings demonstrate that citizen science-based approaches like PGP-UK have an important role to play in the public awareness, acceptance and implementation of genomics and personalized medicine.

Collaboration


Dive into the Simone Ecker's collaboration.

Top Co-Authors

Avatar

Vera Pancaldi

University College London

View shared research outputs
Top Co-Authors

Avatar

Dirk S. Paul

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Stephan Beck

University College London

View shared research outputs
Top Co-Authors

Avatar

Avik Datta

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Alfonso Valencia

Barcelona Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar

Guillem Clot

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marta Kulis

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Simon Heath

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Alice L. Mann

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Francesco Paolo Casale

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge