Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Ferraro is active.

Publication


Featured researches published by Simone Ferraro.


arXiv: Cosmology and Nongalactic Astrophysics | 2016

CMB-S4 Science Book, First Edition

Kevork N. Abazajian; Peter Adshead; Z. Ahmed; S. W. Allen; David Alonso; K. Arnold; C. Baccigalupi; J. G. Bartlett; Nicholas Battaglia; B. A. Benson; C. Bischoff; J. Borrill; Victor Buza; Erminia Calabrese; Robert R. Caldwell; J. E. Carlstrom; C. L. Chang; T. M. Crawford; Francis-Yan Cyr-Racine; Francesco De Bernardis; Tijmen de Haan; Serego Alighieri Sperello di; Joanna Dunkley; Cora Dvorkin; J. Errard; Giulio Fabbian; Stephen M. Feeney; Simone Ferraro; Jeffrey P. Filippini; Raphael Flauger

This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.


Physical Review D | 2011

Cluster abundance in f(R) gravity models

Simone Ferraro; Fabian Schmidt; Wayne Hu

As one of the most powerful probes of cosmological structure formation, the abundance of massive galaxy clusters is a sensitive probe of modifications to gravity on cosmological scales. In this paper, we present results from N-body simulations of a general class of f(R) models, which self-consistently solve the nonlinear field equation for the enhanced forces. Within this class we vary the amplitude of the field, which controls the range of the enhanced gravitational forces, both at the present epoch and as a function of redshift. Most models in the literature can be mapped onto the parameter space of this class. Focusing on the abundance of massive dark matter halos, we compare the simulation results to a simple spherical collapse model. Current constraints lie in the large-field regime, where the chameleon mechanism is not important. In this regime, the spherical collapse model works equally well for a wide range of models and can serve as a model-independent tool for placing constraints on f(R) gravity from cluster abundance. Using these results, we show how constraints from the observed local abundance of X-ray clusters on a specific f(R) model can be mapped onto other members of this general class of models.


Journal of Cosmology and Astroparticle Physics | 2017

The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

Thibaut Louis; Emily Grace; Matthew Hasselfield; Marius Lungu; Loïc Maurin; Graeme E. Addison; Peter A. R. Ade; Simone Aiola; Rupert Allison; M. Amiri; Elio Angile; Nicholas Battaglia; James A. Beall; Francesco De Bernardis; J. Richard Bond; Joe Britton; Erminia Calabrese; H. M. Cho; Steve K. Choi; Kevin Coughlin; Devin Crichton; Kevin T. Crowley; Rahul Datta; Mark J. Devlin; Simon R. Dicker; Joanna Dunkley; Rolando Dünner; Simone Ferraro; Anna E. Fox; Patricio A. Gallardo

Author(s): Louis, T; Grace, E; Hasselfield, M; Lungu, M; Maurin, L; Addison, GE; Ade, PAR; Aiola, S; Allison, R; Amiri, M; Angile, E; Battaglia, N; Beall, JA; De Bernardis, F; Bond, JR; Britton, J; Calabrese, E; Cho, HM; Choi, SK; Coughlin, K; Crichton, D; Crowley, K; Datta, R; Devlin, MJ; Dicker, SR; Dunkley, J; Dunner, R; Ferraro, S; Fox, AE; Gallardo, P; Gralla, M; Halpern, M; Henderson, S; Hill, JC; Hilton, GC; Hilton, M; Hincks, AD; Hlozek, R; Patty Ho, SP; Huang, Z; Hubmayr, J; Huffenberger, KM; Hughes, JP; Infante, L; Irwin, K; Kasanda, SM; Klein, J; Koopman, B; Kosowsky, A; Li, D; Madhavacheril, M; Marriage, TA; McMahon, J; Menanteau, F; Moodley, K; Munson, C; Naess, S; Nati, F; Newburgh, L; Nibarger, J; Niemack, MD; Nolta, MR; Nunez, C; Page, LA; Pappas, C; Partridge, B; Rojas, F; Schaan, E; Schmitt, BL; Sehgal, N; Sherwin, BD; Sievers, J; Simon, S; Spergel, DN; Staggs, ST; Switzer, ER; Thornton, R; Trac, H; Treu, J; Tucker, C; Engelen, AV; Ward, JT; Wollack, EJ | Abstract:


Journal of Cosmology and Astroparticle Physics | 2012

Halo clustering and gNL-type primordial non-gaussianity

Kendrick M. Smith; Simone Ferraro; Marilena LoVerde

A wide range of multifield inflationary models generate non-Gaussian initial conditions in which the initial adiabatic fluctuation is of the form (zeta_G + g_{NL} zeta_G^3). We study halo clustering in these models using two different analytic methods: the peak-background split framework, and brute force calculation in a barrier crossing model, obtaining agreement between the two. We find a simple, theoretically motivated expression for halo bias which agrees with N-body simulations and can be used to constrain g_{NL} from observations. We discuss practical caveats to constraining g_{NL} using only observable properties of a tracer population, and argue that constraints obtained from populations whose observed bias is <~ 2.5 are generally not robust to uncertainties in modeling the halo occupation distribution of the population.


Physical Review D | 2015

WISE measurement of the integrated Sachs-Wolfe effect

Simone Ferraro; Blake D. Sherwin; David N. Spergel

Simone Ferraro, Blake D. Sherwin, 3 and David N. Spergel Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 USA Department of Physics, University of California, Berkeley, CA, USA Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 USA (Dated: January 7, 2014)


Journal of Cosmology and Astroparticle Physics | 2013

Stochastic bias from non-Gaussian initial conditions

Daniel Baumann; Simone Ferraro; Dan Green; Kendrick M. Smith

In this article, we show that a stochastic form of scale-dependent halo bias arises in multi-source inflationary models, where multiple fields determine the initial curvature perturbation. We derive this effect for general non-Gaussian initial conditions and study various examples, such as curvaton models and quasi-single field inflation. We present a general formula for both the stochastic and the non-stochastic parts of the halo bias, in terms of the N-point cumulants of the curvature perturbation at the end of inflation. At lowest order, the stochasticity arises if the collapsed limit of the four-point function is boosted relative to the square of the three-point function in the squeezed limit. We derive all our results in two ways, using the barrier crossing formalism and the peak-background split method. In a companion paper [1], we prove that these two approaches are mathematically equivalent.


Physical Review Letters | 2017

Detecting Patchy Reionization in the Cosmic Microwave Background

Kendrick M. Smith; Simone Ferraro

Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons (the kSZ effect), and residual foregrounds. We propose a new statistic which separates the kSZ signal from the others, and also allows the kSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift, and does not require external datasets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.


Monthly Notices of the Royal Astronomical Society | 2013

On the correspondence between barrier crossing, peak-background split and local biasing

Simone Ferraro; Kendrick M. Smith; Dan Green; Daniel Baumann

Several, apparently distinct, formalisms exist in the literature for predicting the clustering of dark matter halos. It has been noticed on a case-by-case basis that the predictions of these different methods agree in specific examples, but there is no general proof that they are equivalent. In this paper, we give a simple proof of the mathematical equivalence of barrier crossing, peak-background split, and local biasing.


Journal of Cosmology and Astroparticle Physics | 2018

Optimization study for the experimental configuration of CMB-S4

D. Barron; Y. Chinone; Akito Kusaka; Julian Borril; J. Errard; Stephen M. Feeney; Simone Ferraro; Reijo Keskitalo; Adrian T. Lee; N. A. Roe; Blake D. Sherwin; A. Suzuki

© 2018 IOP Publishing Ltd and Sissa Medialab. The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2-10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (∼ degree) and small (∼ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale. The configurations with large-aperture telescopes have a shallow optimum around 4-6 m in aperture diameter, assuming that large telescopes can achieve good performance for low-frequency noise. We explore some of the uncertainties of the instrumental model and cost parameters, and we find that the optimum has a weak dependence on these parameters. The hybrid configuration shows an even broader optimum, spanning a range of 4-10 m in aperture for the large telescopes. We also present two strawperson configurations as an outcome of this optimization study, and we discuss some ideas for improving our simple cost and instrumental models used here. There are several areas of this analysis that deserve further improvement. In our forecasting framework, we adopt a simple two-component foreground model with spatially varying power-law spectral indices. We estimate de-lensing performance statistically and ignore non-idealities such as anisotropic mode coverage, boundary effect, and possible foreground residual. Instrumental systematics, which is not accounted for in our analyses, may also influence the conceptual design. Further study of the instrumental and cost models will be one of the main areas of study by the entire CMB-S4 community. We hope that our framework will be useful for estimating the influence of these improvements in the future, and we will incorporate them in order to further improve the optimization.


Physical Review D | 2012

Supersonic baryon-CDM velocities and CMB B -mode polarization

Simone Ferraro; Kendrick M. Smith; Cora Dvorkin

It has recently been shown that supersonic relative velocities between dark matter and baryonic matter can have a significant effect on formation of the first structures in the Universe. If this effect is still non-negligible during the epoch of hydrogen reionization, it generates large-scale anisotropy in the free-electron density, which gives rise to a CMB

Collaboration


Dive into the Simone Ferraro's collaboration.

Top Co-Authors

Avatar

Kendrick M. Smith

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Battaglia

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Shirley Ho

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Giusarma

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge