Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Grimm is active.

Publication


Featured researches published by Simone Grimm.


Biological Psychiatry | 2008

Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder

Simone Grimm; Johannes Beck; Daniel Schuepbach; Daniel Hell; Peter Boesiger; Felix Bermpohl; Ludwig Niehaus; Heinz Boeker; Georg Northoff

BACKGROUND Although recent neuroimaging and therapeutic transcranial magnetic cortex stimulation (TMS) studies suggest imbalance between left and right dorsolateral prefrontal cortex (DLPFC) in major depressive disorder (MDD) the fundamental neuropsychological characterization of left DLPFC hypoactivity and right DLPFC hyperactivity in MDD remains poorly understood. METHODS We used event-related functional magnetic resonance imaging (fMRI) to investigate neural activity in left and right DLPFC related to unattended (unexpected) and attended (expected) judgment of emotions. Participating in the study were 20 medication-free patients with MDD and 30 healthy subjects. RESULTS The MDD patients showed hypoactivity in the left DLPFC during both unattended and attended emotional judgment and hyperactivity in the right DLPFC during attended emotional judgment. In contrast to healthy subjects, left DLPFC activity during emotional judgment was not parametrically modulated by negative emotional valence and was inversely modulated by positive emotional valence in MDD patients. Hyperactivity in the right DLPFC correlated with depression severity. CONCLUSIONS Results demonstrate that left DLPFC hypoactivity is associated with negative emotional judgment rather than with emotional perception or attention while right DLPFC hyperactivity is linked to attentional modulation. Left-right DLPFC imbalance is characterized in neuropsychological regard, which bridges the gap from resting metabolism and therapeutic repetitive transcranial magnetic stimulation effects to functional neuroanatomy of altered emotional-cognitive interaction in MDD.


Nature Neuroscience | 2007

GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI

Georg Northoff; Martin Walter; Rolf F. Schulte; Johannes Beck; Ulrike Dydak; A Henning; Heinz Boeker; Simone Grimm; Peter Boesiger

The human anterior cingulate cortex (ACC) is part of the default-mode network that shows predominant negative blood oxygen level–dependent (BOLD) responses in functional magnetic resonance imaging (fMRI). We combined fMRI during emotional processing and resting-state magnetic resonance spectroscopy measurements and observed that the concentration of GABA in the ACC specifically correlated with the amount of negative BOLD responses in the very same region. Our findings show that default-mode network negative BOLD responses during emotions are mediated by GABA.


Archives of General Psychiatry | 2009

The Relationship Between Aberrant Neuronal Activation in the Pregenual Anterior Cingulate, Altered Glutamatergic Metabolism, and Anhedonia in Major Depression

Martin Walter; A Henning; Simone Grimm; Rolf F. Schulte; Johannes Beck; Ulrike Dydak; Betina Schnepf; Heinz Boeker; Peter Boesiger; Georg Northoff

CONTEXT Major depressive disorder (MDD) is characterized by diverse metabolic and functional abnormalities that occur in, among other regions, the pregenual anterior cingulate cortex (pgACC), a cortical region linked to anhedonia. OBJECTIVES To contextualize metabolic, functional, and clinical parameters and thus to reveal cellular mechanisms related to anhedonia. DESIGN The pgACC was investigated using a combined functional magnetic resonance imaging and magnetic resonance spectroscopic approach. Negative blood oxygenation level-dependent (BOLD) activations in the pgACC were assessed during emotional stimulation. Quantitative J-resolved magnetic resonance spectroscopy in the pgACC enabled simultaneous determination of glutamine, glutamate, N-acetylaspartate, glucose, and gamma-aminobutyric acid concentrations. Subjective emotional intensity ratings as well as various clinical parameters were determined. SETTING The patients were recruited and evaluated in the Department of Psychiatry, University of Zurich, while the measurements were performed in the Institute of Biomedical Engineering, University of Zurich and the Technical University Zurich. PARTICIPANTS Nineteen unmedicated patients with MDD and 24 healthy subjects. MAIN OUTCOME MEASURES Reduced glutamine levels and lower functional responses in pgACC in anhedonic depressed patients were expected to be the predominant effect of abnormal glutamatergic transmission. It was further tested if, among patients, the ratings of emotional intensity on visual stimulation predicted the amount of metabolic and functional alterations in terms of reduced relative metabolite concentrations and BOLD changes. RESULTS Patients with highly anhedonic MDD show decreased glutamine but normal glutamate and gamma-aminobutyric acid concentrations, with glutamine concentrations being dissociated from glucose concentrations. Glutamate and N-acetylaspartate concentrations in pgACC correlate with negative BOLD responses induced by emotional stimulation in MDD; whereas in healthy subjects, negative BOLD responses correlate with gamma-aminobutyric acid instead. Negative BOLD responses as well as glutamate and N-acetylaspartate concentrations correlate with emotional intensity ratings, an anhedonia surrogate, in those with MDD but not in healthy subjects. CONCLUSION Aberrant neuronal activation patterns of the pgACC in anhedonic depression are related to deficits of glutamatergic metabolism.


Human Brain Mapping | 2009

Increased self‐focus in major depressive disorder is related to neural abnormalities in subcortical‐cortical midline structures

Simone Grimm; Jutta Ernst; Peter Boesiger; Daniel Schuepbach; Daniel Hell; Heinz Boeker; Georg Northoff

Patients with major depressive disorder (MDD) often show a tendency to strongly introspect and reflect upon their self, which has been described as increased self‐focus. Although subcortical‐cortical midline structures have been associated with reflection and introspection of oneself in healthy subjects, the neural correlates of the abnormally increased attribution of negative emotions to oneself, i.e. negative self‐attribution, as hallmark of the increased self‐focus in MDD remain unclear. The aim of the study was, therefore, to investigate the neural correlates during judgment of self‐relatedness of positive and negative emotional stimuli thereby testing for emotional self‐attribution. Using fMRI, we investigated 27 acute MDD patients and compared them with 25 healthy subjects employing a paradigm that focused on judgment of self‐relatedness when compared with mere perception of the very same emotional stimuli. Behaviourally, patients with MDD showed significantly higher degrees of self‐relatedness of specifically negative emotional stimuli when compared with healthy subjects. Neurally, patients with MDD showed significantly lower signal intensities in various subcortical and cortical midline regions like the dorsomedial prefrontal cortex (DMPFC), supragenual anterior cingulate cortex, precuneus, ventral striatum (VS), and the dorsomedial thalamus (DMT). Signal changes in the DMPFC correlated with depression severity and hopelessness whereas those in the VS and the DMT were related to judgment of self‐relatedness of negative emotional stimuli. In conclusion, we present first evidence that the abnormally increased negative self‐attribution as hallmark of the increased self‐focus in MDD might be mediated by altered neural activity in subcortical‐cortical midline structures. Hum Brain Mapp, 2009.


NeuroImage | 2006

Segregated neural representation of distinct emotion dimensions in the prefrontal cortex-an fMRI study.

Simone Grimm; Conny F. Schmidt; Felix Bermpohl; Alexander Heinzel; Yuliya Dahlem; Michael Wyss; Daniel Hell; Peter Boesiger; Heinz Boeker; Georg Northoff

Emotions are frequently characterized by distinct dimensions such as valence, intensity, and recognition. However, the exact neural representation of these dimensions in different prefrontal cortical regions remains unclear. One of the problems in revealing prefrontal cortical representation is that the very same regions are also involved in cognitive functions associated with emotion processing. We therefore conducted an fMRI study involving the viewing of emotional pictures (using the International Affective Picture System; IAPS) and controlled for associated cognitive processing like judgment and preceding attention. Functional activation was correlated with subjective post-scanning ratings of valence, intensity, and recognition. Valence significantly correlated with the functional response in ventromedial prefrontal cortex (VMPFC) and dorsolateral prefrontal cortex (DLPFC), intensity with activation in ventrolateral prefrontal cortex (VLPFC) and dorsomedial prefrontal cortex (DMPFC), and recognition with the functional response in perigenual anterior cingulate cortex (PACC). In conclusion, our results indicate segregated neural representation of the different emotion dimensions in different prefrontal cortical regions.


PLOS ONE | 2012

Ketamine Decreases Resting State Functional Network Connectivity in Healthy Subjects: Implications for Antidepressant Drug Action

M Scheidegger; Martin Walter; Mick Lehmann; Coraline D. Metzger; Simone Grimm; Heinz Boeker; Peter Boesiger; A Henning; Erich Seifritz

Increasing preclinical and clinical evidence underscores the strong and rapid antidepressant properties of the glutamate-modulating NMDA receptor antagonist ketamine. Targeting the glutamatergic system might thus provide a novel molecular strategy for antidepressant treatment. Since glutamate is the most abundant and major excitatory neurotransmitter in the brain, pathophysiological changes in glutamatergic signaling are likely to affect neurobehavioral plasticity, information processing and large-scale changes in functional brain connectivity underlying certain symptoms of major depressive disorder. Using resting state functional magnetic resonance imaging (rsfMRI), the „dorsal nexus “(DN) was recently identified as a bilateral dorsal medial prefrontal cortex region showing dramatically increased depression-associated functional connectivity with large portions of a cognitive control network (CCN), the default mode network (DMN), and a rostral affective network (AN). Hence, Sheline and colleagues (2010) proposed that reducing increased connectivity of the DN might play a critical role in reducing depression symptomatology and thus represent a potential therapy target for affective disorders. Here, using a randomized, placebo-controlled, double-blind, crossover rsfMRI challenge in healthy subjects we demonstrate that ketamine decreases functional connectivity of the DMN to the DN and to the pregenual anterior cingulate (PACC) and medioprefrontal cortex (MPFC) via its representative hub, the posterior cingulate cortex (PCC). These findings in healthy subjects may serve as a model to elucidate potential biomechanisms that are addressed by successful treatment of major depression. This notion is further supported by the temporal overlap of our observation of subacute functional network modulation after 24 hours with the peak of efficacy following an intravenous ketamine administration in treatment-resistant depression.


Human Brain Mapping | 2006

Affective judgment and beneficial decision making: ventromedial prefrontal activity correlates with performance in the Iowa Gambling Task.

Georg Northoff; Simone Grimm; Heinz Boeker; Conny F. Schmidt; Felix Bermpohl; Alexander Heinzel; Daniel Hell; Peter Boesiger

Damasio proposes in his somatic marker theory that not only cognitive but also affective components are critical for decision making. Since affective judgment requires an interplay between affective and cognitive components, it might be considered a key process in decision making that has been linked to neural activity in ventromedial prefrontal cortex (VMPFC). Using functional magnetic resonance imaging (fMRI), we examined the relationship between VMPFC, emotionally (unexpected)‐ and cognitively (expected)‐accentuated affective judgment, and beneficial decision making (Iowa Gambling Task; IGT) in healthy subjects. Neuronal activity in the VMPFC during unexpected affective judgment significantly correlated with both global and final performance in the IGT task. These findings suggest that the degree to which subjects recruit the VMPFC during affective judgment is related to beneficial performance in decision making in gambling. Hum Brain Mapp 2006.


World Journal of Biological Psychiatry | 2011

Reduced negative BOLD responses in the default-mode network and increased self-focus in depression

Simone Grimm; Jutta Ernst; Peter Boesiger; Daniel Schuepbach; Heinz Boeker; Georg Northoff

Abstract Objectives. Functional imaging studies in major depressive disorder (MDD) indicate abnormal resting state neural activity and negative blood oxygenation level-dependent (BOLD) responses (NBRs) in regions of the default-mode network (DMN). Methods. Since activity in DMN regions has been associated with self-relatedness, we investigated neural activity in these regions during self-related emotional judgement and passive picture viewing in 25 patients with MDD and 25 healthy controls in an event-related fMRI design. Results. Behaviourally, MDD subjects showed significantly higher ratings of self-relatedness that also correlated with depression symptoms such as hopelessness. Neuroimaging results in MDD patients showed significantly lower negative BOLD responses (NBRs) in anterior medial cortical regions during judgement of self-relatedness while posterior medial regions showed increased NBRs. Unlike in healthy subjects, the anterior medial cortical NBRs were no longer parametrically modulated by the degree of self-relatedness in MDD patients. Conclusions. Our findings suggest that reduced NBRs in the anterior regions of the default-mode network may signify decoupling from self-relatedness in MDD patients with the consecutive abnormal increase of self-focus.


Schizophrenia Research | 2005

NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI

Georg Northoff; Andre Richter; Felix Bermpohl; Simone Grimm; Ernst Martin; Valentine L. Marcar; Constance Wahl; Daniel Hell; Heinz Boeker

BACKGROUND Based on animal data, NMDA receptor hypofunction has been suggested as a model for positive symptoms in schizophrenia. NMDA receptor hypofunction affects several corticolimbic brain regions, of which the posterior cingulate seems to be the most sensitive. However, empirical support for a crucial role of posterior cingulate NMDA hypofunction in the pathophysiology of positive symptoms is still missing in humans. We therefore conducted an fMRI study using the NMDA antagonist ketamine in healthy human subjects during episodic memory retrieval, which is supposed to activate the posterior cingulate. METHODS We investigated 16 healthy subjects which were assigned to either placebo (n = 7; saline) or ketamine (n = 9; 0.6 mg/kg/h) group in a double-blind study design. All subjects received their infusion while performing an episodic memory retrieval task in the scanner. Immediately after the fMRI session, psychopathological effects of ketamine were measured using the Altered States of Consciousness Questionnaire. RESULTS The placebo group showed BOLD signal increases in the posterior and anterior cingulate during retrieval. Signal increases were significantly lower in the ketamine group. Lower signal increases in the posterior cingulate correlated significantly with positive (i.e. psychosis-like) symptoms induced by ketamine. CONCLUSION The present study for the first time demonstrates a relationship between NMDA receptors, posterior cingulate and positive (i.e. psychosis-like) symptoms in humans. Confirming findings from animal studies, it supports the hypothesis of a pathophysiological role of NMDA receptor hypofunction in the posterior cingulate in schizophrenia.


Biological Psychiatry | 2011

Abnormal Cingulate and Prefrontal Cortical Neurochemistry in Major Depression After Electroconvulsive Therapy

Angela Merkl; Florian Schubert; Arnim Quante; Alexander Luborzewski; Eva-Lotta Brakemeier; Simone Grimm; Isabella Heuser; Malek Bajbouj

BACKGROUND Metabolic changes after electroconvulsive therapy (ECT) have been described in depressed patients, but results are heterogeneous. To determine the concentrations of N-acetyl-aspartate (NAA), choline-containing compounds, creatine + phosphocreatine (tCr), and glutamate in the left dorsolateral prefrontal cortex (DLPFC) and left anterior cingulum of depressed patients before and after ECT, we used proton magnetic resonance spectroscopy. METHODS Metabolite concentrations in the DLPFC and anterior cingulum were determined in 25 patients with major depressive disorder (MDD) and 27 healthy control subjects using the point resolved spectroscopy sequence. Neuropsychological and clinical parameters were determined before and after nine sessions of right unilateral ultrabrief pulse ECT. RESULTS In the cingulum, baseline glutamate and NAA levels were decreased in depressed patients. High glutamate at baseline predicted a greater treatment response. After ECT, increased NAA levels were observed in responders to treatment and tCr levels were significantly decreased across all depressive patients. In the left DLPFC, NAA levels were significantly decreased in responders to ECT compared with nonresponders. Autobiographic memory was deteriorated in all patients after ECT. CONCLUSIONS Low glutamatergic state in depressive patients emphasizes the role of dysfunctional glutamatergic neurotransmission in the pathophysiology of MDD. The low NAA level at baseline in the patients supports neurodegenerative changes in MDD. N-acetyl-aspartate levels might serve as early surrogate marker for dynamic metabolic changes due to ECT, reflecting both neuroprotection and lowered neuronal viability. The tCr decrease in the cingulum suggests altered mitochondrial energy metabolism.

Collaboration


Dive into the Simone Grimm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Walter

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge