Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone M. R. Camargo is active.

Publication


Featured researches published by Simone M. R. Camargo.


Nature | 2012

ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation

Tatsuo Hashimoto; Thomas Perlot; Ateequr Rehman; Jean Trichereau; Hiroaki Ishiguro; Magdalena Paolino; Verena Sigl; Toshikatsu Hanada; Reiko Hanada; Simone Lipinski; Birgit Wild; Simone M. R. Camargo; Dustin Singer; Andreas Richter; Keiji Kuba; Akiyoshi Fukamizu; Stefan Schreiber; Hans Clevers; François Verrey; Philip Rosenstiel; Josef M. Penninger

Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.


Nature | 2006

Essential role for collectrin in renal amino acid transport

Ursula Danilczyk; Christine Remy; Chahira Benabbas; Gerti Stange; Andreas Richter; Sudha Arya; J. Andrew Pospisilik; Dustin Singer; Simone M. R. Camargo; Victoria Makrides; Tamara Ramadan; François Verrey; Carsten A. Wagner; Josef M. Penninger

Angiotensin -converting enzyme 2 (ACE2) is a regulator of the renin angiotensin system involved in acute lung failure, cardiovascular functions and severe acute respiratory syndrome (SARS) infections in mammals. A gene encoding a homologue to ACE2, termed collectrin (Tmem27), has been identified in immediate proximity to the ace2 locus. The in vivo function of collectrin was unclear. Here we report that targeted disruption of collectrin in mice results in a severe defect in renal amino acid uptake owing to downregulation of apical amino acid transporters in the kidney. Collectrin associates with multiple apical transporters and defines a novel group of renal amino acid transporters. Expression of collectrin in Xenopus oocytes and Madin–Darby canine kidney (MDCK) cells enhances amino acid transport by the transporter B0AT1. These data identify collectrin as a key regulator of renal amino acid uptake.


Journal of The American Society of Nephrology | 2007

Early Aldosterone-Induced Gene Product Regulates the Epithelial Sodium Channel by Deubiquitylation

Panagiotis Fakitsas; Gabriele Adam; Dorothée Daidié; Miguel X. van Bemmelen; Fatemeh Fouladkou; Andrea Patrignani; Ulrich Wagner; Richard Warth; Simone M. R. Camargo; Olivier Staub; François Verrey

The mineralocorticoid hormone aldosterone controls sodium reabsorption and BP largely by regulating the cell-surface expression and function of the epithelial sodium channel (ENaC) in target kidney tubules. Part of the stimulatory effect of aldosterone on ENaC is mediated by the induction of serum- and glucocorticoid-regulated kinase 1 (Sgk1), a kinase that interferes with the ubiquitylation of ENaC by ubiquitin-protein ligase Nedd4-2. In vivo early aldosterone-regulated mRNA now has been identified in microselected mouse distal nephron by microarray. From 22 mRNA that displayed a two-fold or more change, 13 were downregulated and nine were upregulated. Besides Sgk1, the induced mRNA include Grem2 (protein related to DAN and cerebrus [PRDC]), activating transcription factor 3, cAMP responsive element modulator, and the ubiquitin-specific protease Usp2-45. The induction of this last enzyme isoform was verified in mouse distal nephron tubule at the protein level. With the use of Hek293 cells, Xenopus oocytes, and mpkCCD(c14) cells as expression systems, it was shown that Usp2-45 deubiquitylates ENaC and stimulates ENaC-mediated sodium transport, an effect that is not additive to that of Sgk1. A deubiquitylating enzyme that targets ENaC in vitro and thus may play a role in sodium transport regulation was identified within a series of new in vivo early aldosterone-regulated gene products.


Pflügers Archiv: European Journal of Physiology | 2004

SGK1 increases Na,K-ATP cell-surface expression and function in Xenopus laevis oocytes

Marija Zecevic; Dirk Heitzmann; Simone M. R. Camargo; François Verrey

The Na+-retaining hormone aldosterone increases the cell-surface expression of the luminal epithelial sodium channel (ENaC) and the basolateral Na+ pump (Na,K-ATPase) in aldosterone-sensitive distal nephron cells in a coordinated fashion. To address the question of whether aldosterone-induced serum and glucocorticoid-regulated kinase-1 (SGK1) might be involved in mediating this regulation of Na,K-ATPase subcellular localization, similar to that of the epithelial Na+ channel (ENaC), we co-expressed the Na,K-ATPase (rat α1- and Xenopus laevis β1-subunits) and Xenopus SGK1 in Xenopus oocytes. Measurements of the Na+ pump current showed that wild-type SGK1 increases the function of exogenous Na,K-ATPase at the surface of Xenopus oocytes. This appeared to be secondary to an increase in Na,K-ATPase cell-surface expression as visualized by Western blotting of surface-biotinylated proteins. In contrast, the functional surface expression of two other exogenous transporters, the heterodimeric amino acid transporter LAT1-4F2hc and the Na+/phosphate cotransporter NaPi-IIa, was not increased by SGK1 co-expression. The total pool of exogenous Na,K-ATPase was increased by the co-expression of SGK1, and similarly also by ENaC co-expression. This latter effect depended on the [Na+] of the buffer and was not additive to that of SGK1. When the total Na,K-ATPase was increased by ENaC co-expression, SGK1 still increased Na,K-ATPase cell-surface expression. These observations in Xenopus oocytes suggest the possibility that SGK1 induction and/or activation could participate in the coordinated regulation of Na,K-ATPase and ENaC cell-surface expression in the aldosterone-sensitive distal nephron.


Gastroenterology | 2009

Tissue-Specific Amino Acid Transporter Partners ACE2 and Collectrin Differentially Interact With Hartnup Mutations

Simone M. R. Camargo; Dustin Singer; Victoria Makrides; Katja Huggel; Klaas M. Pos; Carsten A. Wagner; Keiji Kuba; Ursula Danilczyk; Flemming Skovby; Robert Kleta; Josef M. Penninger; François Verrey

Background & Aims Hartnup amino acid transporter B0AT1 (SLC6A19) is the major luminal sodium-dependent neutral amino acid transporter of small intestine and kidney proximal tubule. The expression of B0AT1 in kidney was recently shown to depend on its association with collectrin (Tmem27), a protein homologous to the membrane-anchoring domain of angiotensin-converting enzyme (ACE) 2. Methods Because collectrin is almost absent from small intestine, we tested the hypothesis that it is ACE2 that interacts with B0AT1 in enterocytes. Furthermore, because B0AT1 expression depends on an associated protein, we tested the hypothesis that Hartnup-causing B0AT1 mutations differentially impact on B0AT1 interaction with intestinal and kidney accessory proteins. Results Immunofluorescence, coimmunoprecipitation, and functional experiments using wild-type and ace2-null mice showed that expression of B0AT1 in small intestine critically depends on ACE2. Coexpressing new and previously identified Hartnup disorder–causing missense mutations of B0AT1 with either collectrin or ACE2 in Xenopus laevis oocytes showed that the high-frequency D173N and the newly identified P265L mutant B0AT1 transporters can still be activated by ACE2 but not collectrin coexpression. In contrast, the human A69T and R240Q B0AT1 mutants cannot be activated by either of the associated proteins, although they function as wild-type B0AT1 when expressed alone. Conclusions We thus show that ACE2 is necessary for the expression of the Hartnup transporter in intestine and suggest that the differential functional association of mutant B0AT1 transporters with ACE2 and collectrin in intestine and kidney, respectively, participates in the phenotypic heterogeneity of human Hartnup disorder.


Journal of Cellular Physiology | 2006

Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway

Tamara Ramadan; Simone M. R. Camargo; Vanessa Summa; Peter Hunziker; Serge Chesnov; Klaas M. Pos; François Verrey

Basolateral efflux is a necessary step in transepithelial (re)absorption of amino acids from small intestine and kidney proximal tubule. The best characterized basolateral amino acid transporters are y+LAT1‐4F2hc and LAT2‐4F2hc that function as obligatory exchangers and thus, do not contribute to net amino acid (re)absorption. The aromatic amino acid transporter TAT1 was shown previously to localize basolaterally in rats small intestine and to mediate the efflux of L‐Trp in the absence of exchange substrate, upon expression in Xenopus oocytes. We compared here the amino acid influx and efflux via mouse TAT1 in Xenopus oocytes. The results show that mTAT1 functions as facilitated diffusion pathway for aromatic amino acids and that its properties are symmetrical in terms of selectivity and apparent affinity. We show by real‐time RT‐PCR that its mRNA is highly expressed in mouse small intestine mucosa, kidney, liver, and skeletal muscle as well as present in all other tested tissues. We show that mTAT1 is not N‐glycosylated and that it localizes to the mouse kidney proximal tubule. This expression is characterized by an axial gradient similar to that of the luminal neutral amino acid transporter B0AT1 and shows the same basolateral localization as 4F2hc. mTAT1 also localizes to the basolateral membrane of small intestine enterocytes and to the sinusoidal side of perivenous hepatocytes. In summary, we show that TAT1 is a basolateral epithelial transporter and that it can function as a net efflux pathway for aromatic amino acids. We propose that it, thereby, may supply parallel exchangers with recycling uptake substrates that could drive the efflux of other amino acids. J.Cell.Physiol.


Pflügers Archiv: European Journal of Physiology | 2009

Kidney amino acid transport

François Verrey; Dustin Singer; Tamara Ramadan; Raphael N. Vuille-dit-Bille; Luca Mariotta; Simone M. R. Camargo

Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na+-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B0AT1 (SLC6A19) and suggested for the l-proline transporter SIT1 (IMINOB, SLC6A20) and for B0AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin–angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B0AT1 and SIT1. Some mutations of B0AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.


PLOS ONE | 2010

The Tegument of the Human Parasitic Worm Schistosoma mansoni as an Excretory Organ: The Surface Aquaporin SmAQP Is a Lactate Transporter

Zahra Faghiri; Simone M. R. Camargo; Katja Huggel; Ian C. Forster; David Ndegwa; François Verrey; Patrick J. Skelly

Adult schistosomes are intravascular parasites that metabolize imported glucose largely via glycolysis. How the parasites get rid of the large amounts of lactic acid this generates is unknown at the molecular level. Here, we report that worms whose aquaporin gene (SmAQP) has been suppressed using RNAi fail to rapidly acidify their culture medium and excrete less lactate compared to controls. Functional expression of SmAQP in Xenopus oocytes demonstrates that this protein can transport lactate following Michaelis-Menten kinetics with low apparent affinity (Km = 41±5. 8 mM) and with a low energy of activation (Ea = 7.18±0.7 kcal/mol). Phloretin, a known inhibitor of lactate release from schistosomes, also inhibits lactate movement in SmAQP-expressing oocytes. In keeping with the substrate promiscuity of other aquaporins, SmAQP is shown here to be also capable of transporting water, mannitol, fructose and alanine but not glucose. Using immunofluorescent and immuno-EM, we confirm that SmAQP is localized in the tegument of adult worms. These findings extend the proposed functions of the schistosome tegument beyond its known capacity as an organ of nutrient uptake to include a role in metabolic waste excretion.


The Journal of Physiology | 2013

Specific amino acids inhibit food intake via the area postrema or vagal afferents

Josua Jordi; Brigitte Herzog; Simone M. R. Camargo; Christina N. Boyle; Thomas A. Lutz; François Verrey

•  Proteins are more satiating than fats or lipids. Proteins are built by the 20 proteogenic amino acids. •  Here, we identified l‐arginine, l‐lysine and l‐glutamic acid as the most potent anorectic amino acids in rats. •  l‐Arginine and l‐glutamic acid require intact neurons in the area postrema to inhibit food intake, whereas l‐lysine requires intact afferent fibres of the vagus nerve. All three mediate their effect by the blood stream. •  All three amino acids induce gastric distension by delaying gastric emptying and inducing secretion. However, the gastric phenotype does not mediate the anorectic response. •  These results unravel amino acid‐specific mechanisms regulating digestion and eating behaviour and thereby contribute to the understanding of nutrient sensing in vivo.


Pflügers Archiv: European Journal of Physiology | 2007

Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger

Tamara Ramadan; Simone M. R. Camargo; Brigitte Herzog; Mauro Bordin; Klaas M. Pos; François Verrey

The rate of amino acid efflux from individual cells needs to be adapted to cellular demands and plays a central role for the control of extracellular amino acid homeostasis. A particular example of such an outward amino acid transport is the basolateral efflux from transporting epithelial cells located in the small intestine and kidney proximal tubule. Because LAT2-4F2hc (Slc7a8–Slc3a2), the best known basolateral neutral amino acid transporter of these epithelial cells, functions as an obligatory exchanger, we tested whether TAT1 (Slc16a10), the aromatic amino-acid facilitated diffusion transporter, might allow amino acid efflux via this exchanger by recycling its influx substrates. In this study, we show by immunofluorescence that TAT1 and LAT2 indeed colocalize in the early kidney proximal tubule. Using the Xenopus laevis oocytes expression system, we show that l-glutamine is released from oocytes into an amino-acid-free medium only when both transporters are coexpressed. High-performance liquid chromatography analysis reveals that several other neutral amino acids are released as well. The transport function of both TAT1 and LAT2-4F2hc is necessary for this efflux, as coexpression of functionally inactive but surface-expressed mutants is ineffective. Based on negative results of coimmunoprecipitation and crosslinking experiments, the physical interaction of these transporters does not appear to be required. Furthermore, replacement of TAT1 or LAT2-4F2hc by the facilitated diffusion transporter LAT4 or the obligatory exchanger LAT1, respectively, supports similar functional cooperation. Taken together, the results suggest that the aromatic amino acid diffusion pathway TAT1 can control neutral amino acid efflux via neighboring exchanger LAT2-4F2hc, by recycling its aromatic influx substrates.

Collaboration


Dive into the Simone M. R. Camargo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge