Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Oppenheimer is active.

Publication


Featured researches published by Simone Oppenheimer.


Journal of Medicinal Chemistry | 2009

Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

Gretchen M. Schroeder; Yongmi An; Zhen-Wei Cai; Xiao-Tao Chen; Cheryl M. Clark; Lyndon A. M. Cornelius; Jun Dai; Johnni Gullo-Brown; Ashok Kumar Gupta; Benjamin Henley; John T. Hunt; Robert Jeyaseelan; Amrita Kamath; Kyoung S. Kim; Jonathan Lippy; Louis J. Lombardo; Veeraswamy Manne; Simone Oppenheimer; John S. Sack; Robert J. Schmidt; Guoxiang Shen; Kevin Stefanski; John S. Tokarski; George L. Trainor; Barri Wautlet; Donna D. Wei; David K. Williams; Yingru Zhang; Yueping Zhang; Joseph Fargnoli

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.


Clinical Cancer Research | 2006

Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling.

Tai W. Wong; Francis Y. Lee; Chiang Yu; Feng R. Luo; Simone Oppenheimer; Hongjian Zhang; Richard Smykla; Harold Mastalerz; Brian E. Fink; John T. Hunt; Ashvinikumar V. Gavai; Gregory D. Vite

Purpose: The studies described here are intended to characterize the ability of BMS-599626, a small-molecule inhibitor of the human epidermal growth factor receptor (HER) kinase family, to modulate signaling and growth of tumor cells that depend on HER1 and/or HER2. Experimental Design: The potency and selectivity of BMS-599626 were assessed in biochemical assays using recombinant protein kinases, as well as in cell proliferation assays using tumor cell lines with varying degrees of dependence on HER1 or HER2 signaling. Modulation of receptor signaling was determined in cell assays by Western blot analyses of receptor autophosphorylation and downstream signaling. The ability of BMS-599626 to inhibit receptor heterodimer signaling in tumor cells was studied by receptor coimmunoprecipitation. Antitumor activity of BMS-599626 was evaluated using a number of different xenograft models that represent a spectrum of human tumors with HER1 or HER2 overexpression. Results: BMS-599626 inhibited HER1 and HER2 with IC50 of 20 and 30 nmol/L, respectively, and was highly selective when tested against a broad panel of diverse protein kinases. Biochemical studies suggested that BMS-599626 inhibited HER1 and HER2 through distinct mechanisms. BMS-599626 abrogated HER1 and HER2 signaling and inhibited the proliferation of tumor cell lines that are dependent on these receptors, with IC50 in the range of 0.24 to 1 μmol/L. BMS-599626 was highly selective for tumor cells that depend on HER1/HER2 and had no effect on the proliferation of cell lines that do not express these receptors. In tumor cells that are capable of forming HER1/HER2 heterodimers, BMS-599626 inhibited heterodimerization and downstream signaling. BMS-599626 had antitumor activity in models that overexpress HER1 (GEO), as well as in models that have HER2 gene amplification (KPL4) or overexpression (Sal2), and there was good correlation between the inhibition of receptor signaling and antitumor activity. Conclusions: BMS-599626 is a highly selective and potent inhibitor of HER1 and HER2 kinases and inhibits tumor cell proliferation through modulation of receptor signaling. BMS-599626 inhibits HER1/HER2 receptor heterodimerization and provides an additional mechanism of inhibiting tumors in which receptor coexpression and heterodimerization play a major role in driving tumor growth. The preclinical data support the advancement of BMS-599626 into clinical development for the treatment of cancer.


Clinical Cancer Research | 2011

Antitumor and Antiangiogenic Activities of BMS-690514, an Inhibitor of Human EGF and VEGF Receptor Kinase Families

Tai Wai Wong; Francis Lee; Stuart Emanuel; Craig R. Fairchild; Joseph Fargnoli; Brian E. Fink; Ashvinikumar V. Gavai; Amy Hammell; Benjamin Henley; Christine Hilt; John T. Hunt; Bala Krishnan; Daniel Kukral; Anne Lewin; Harold Malone; Derek J. Norris; Simone Oppenheimer; Gregory D. Vite; Chiang Yu

Purpose: The extensive involvement of the HER kinases in epithelial cancer suggests that kinase inhibitors targeting this receptor family have the potential for broad spectrum antitumor activity. BMS-690514 potently inhibits all three HER kinases, and the VEGF receptor kinases. This report summarizes data from biochemical and cellular pharmacology studies, as well as antitumor activity of BMS-690514. Experimental Design: The potency and selectivity of BMS-690514 was evaluated by using an extensive array of enzymatic and binding assays, as well as cellular assays that measure proliferation and receptor signaling. Antitumor activity was evaluated by using multiple xenograft models that depend on HER kinase signaling. The antiangiogenic properties of BMS-690514 were assessed in a matrigel plug assay, and effect on tumor blood flow was measured by dynamic contrast-enhanced MRI. Results: BMS-690514 is a potent and selective inhibitor of epidermal growth factor receptor (EGFR), HER2, and HER4, as well as the VEGF receptor kinases. It inhibits proliferation of tumor cells with potency that correlates with inhibition of receptor signaling, and induces apoptosis in lung tumor cells that have an activating mutation in EGFR. Antitumor activity was observed with BMS-690514 at multiple doses that are well tolerated in mice. There was evidence of suppression of tumor angiogenesis and endothelial function by BMS-690514, which may contribute to its efficacy. Conclusions: By combining inhibition of two receptor kinase families, BMS-690524 is a novel targeted agent that disrupts signaling in the tumor and its vasculature. Clin Cancer Res; 17(12); 4031–41. ©2011 AACR.


Journal of Medicinal Chemistry | 2009

Discovery and preclinical evaluation of [4-[[1-(3-fluorophenyl)methyl]-1H-indazol-5-ylamino]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]carbamic acid, (3S)-3-morpholinylmethyl ester (BMS-599626), a selective and orally efficacious inhibitor of human epidermal growth factor receptor 1 and 2 kinases.

Ashvinikumar V. Gavai; Brian E. Fink; David J. Fairfax; Gregory Scott Martin; Lana M. Rossiter; Christian L. Holst; Soong-Hoon Kim; Kenneth J. Leavitt; Harold Mastalerz; Wen-Ching Han; Derek J. Norris; Bindu Goyal; Shankar Swaminathan; Bharat P. Patel; Arvind Mathur; Dolatrai M. Vyas; John S. Tokarski; Chiang Yu; Simone Oppenheimer; Hongjian Zhang; Punit Marathe; Joseph Fargnoli; Francis Y. Lee; Tai W. Wong; Gregory D. Vite

Structure-activity relationships in a series of 4-[1H-indazol-5-ylamino]pyrrolo[2,1-f][1,2,4]triazine-6-carbamates identified dual human epidermal growth factor receptor (HER)1/HER2 kinase inhibitors with excellent biochemical potency and kinase selectivity. On the basis of its favorable pharmacokinetic profile and robust in vivo activity in HER1 and HER2 driven tumor models, 13 (BMS-599626) was selected as a clinical candidate for treatment of solid tumors.


Gene | 1996

Advanced mRNA differential display: isolation of a new differentially regulated myosin heavy chain-encoding gene in amphibian limb regeneration

Hans Georg Simon; Simone Oppenheimer

In an effort to make mRNA differential display more amenable as a molecular screen, we have optimized the technology for the isotopic and non-isotopic detection of differentially regulated mRNAs. The number of amplification rounds in the displays was significantly reduced, resulting in the semi-quantitative detection of expression patterns of both low- and high-abundance transcripts. Moreover, we extended the method beyond the display of mRNAs by introducing a direct sequencing approach for the fast molecular analysis of isolated cDNAs. Applying this improved technique to the regenerating amphibian limb system, we have identified cDNA PCR products with a temporal difference in expression. This differential regulation was confirmed by Northern analysis, and DNA sequencing uncovered a novel newt differentiation-specific transcript encoding a skeletal myosin heavy chain (MHC).


Bioorganic & Medicinal Chemistry Letters | 2011

Novel pyrrolo[2,1-f][1,2,4]triazin-4-amines: Dual inhibitors of EGFR and HER2 protein tyrosine kinases

Brian E. Fink; Derek J. Norris; Harold Mastalerz; Ping Chen; Bindu Goyal; Yufen Zhao; Soong-Hoon Kim; Gregory D. Vite; Francis Y. Lee; Hongjian Zhang; Simone Oppenheimer; John S. Tokarski; Tai W. Wong; Ashvinikumar V. Gavai

A novel series of 5-((4-aminopiperidin-1-yl)methyl)-pyrrolo[2,1-f][1,2,4]triazin-4-amines with small aniline substituents at the C4 position were optimized for dual EGFR and HER2 protein tyrosine kinase inhibition. Compound 8l exhibited promising oral efficacy in both EGFR and HER2-driven human tumor xenograft models.


Molecular Cancer Therapeutics | 2006

Constitutively active receptor tyrosine kinases as oncogenes in preclinical models for cancer therapeutics

Kristen A. Kellar; Matthew V. Lorenzi; Ching Ping Ho; Dan You; Mei-Li Wen; Rolf Peter Ryseck; Simone Oppenheimer; Brian E. Fink; Gregory D. Vite; Bruce R. Rowley; Chiang Yu; David K. Bol; Francis Y. Lee; Tai W. Wong

Receptor tyrosine kinases (RTK) remain an area of therapeutic interest because of their role in epithelial tumors, and experimental models specific to these targets are highly desirable. Chimeric receptors were prepared by in-frame fusion of the CD8 extracellular sequence with the cytoplasmic sequences of RTKs. A CD8HER2 fusion protein was shown to form disulfide-mediated homodimers and to transform fibroblasts and epithelial cells. CD8RTK fusion proteins transform rat kidney epithelial cells and impart phenotypes that may reflect signaling specificity inherent in the native receptors. Transgenic expression of CD8HER2 and CD8Met in mice resulted in the formation of salivary and mammary gland tumors. The transgenic tumors allow the derivation of allograft tumors and cell lines that are sensitive to inhibition by small molecule kinase inhibitors. This approach provides excellent cell and tumor models for the characterization of signaling properties of diverse RTKs and for the evaluation of rationally designed antagonists targeting these kinases. [Mol Cancer Ther 2006;5(6):1571–6]


Cancer Research | 2011

Abstract 4125: Identification of candidate predictive biomarkers for the cdc7 kinase inhibitor BMS-863233/XL413

William J. Geese; Guan Xing; Beihong Hu; Heshani Desilva; Simone Oppenheimer; Craig R. Fairchild; Bruce Rowley; Petra Ross-Macdonald; Joseph Fargnoli; Adrian Woolfson; Fei Huang

Cdc7 is a serine-threonine kinase that plays a critical role in the licensing of DNA replication origins and has been shown to play a role in DNA damage-induced checkpoint responses. Inhibition of cdc7 activity can block DNA replication, arrest cell cycle progression and can also result in apoptosis. Because of its proximal role in DNA replication, cdc7 kinase represents a novel therapeutic target for cancer treatment that has the potential to provide better control and fewer side effects than traditional chemotherapeutic agents that function distally during chain elongation. To complement the clinical development of BMS-863233/XL413, an ATP-competitive reversible cdc7 kinase inhibitor, we used cell line models to identify gene expression markers that are potentially predictive of a clinical response to BMS-863233/XL413. The in vitro sensitivity for BMS-863233/XL413 was established in a panel of 64 cell lines of mixed histotypes. Neither mutational status (as defined by the Sanger Institute COSMIC database), doubling time nor cdc7, ask/dbf4 or mcm2 basal mRNA expression were significantly associated with intrinsic sensitivity. Using gene expression profiling, we identified an intrinsic sensitivity gene signature consisting of 63 candidate genes whose basal expression was significantly associated with intrinsic sensitivity to BMS-863233/XL413. Evaluation of these markers using the Oncomine™ platform demonstrated enrichment in the ER/PR/HER2-negative breast cancer subtype. Dose titration studies revealed that 49 of these candidate genes were responsive to BMS-863233/XL413 treatment; 17 had IC50 values Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 4125. doi:10.1158/1538-7445.AM2011-4125


Development | 1997

A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning

Hans Georg Simon; Raja Kittappa; Paul A. Khan; Catherine Tsilfidis; Richard A. Liversage; Simone Oppenheimer


Cancer Research | 1996

Identification of Differentially Expressed Messenger RNAs in Human Melanocytes and Melanoma Cells

Hans Georg Simon; Barbara Risse; Monika Jost; Simone Oppenheimer; Csaba Kari; Ulrich Rodeck

Collaboration


Dive into the Simone Oppenheimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge