Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone R. Green is active.

Publication


Featured researches published by Simone R. Green.


Journal of Biological Chemistry | 1997

Characterization of CLA-1, a Human Homologue of Rodent Scavenger Receptor BI, as a Receptor for High Density Lipoprotein and Apoptotic Thymocytes

Koji Murao; Valeska Terpstra; Simone R. Green; Nonna Kondratenko; Daniel Steinberg; Oswald Quehenberger

Recently, a murine scavenger receptor type B class I (SR-BI) was identified that binds high density lipoprotein (HDL) and mediates the selective uptake of cholesterol esters. The human CD36 and LIMPII analogous-1 (CLA-1) receptor shows high sequence homology with SR-BI, but their functional relationship has not been determined. Transfected cells expressing CLA-1 bound HDL with a K d of about 35 μg/ml, similar to the K d for HDL binding to rodent SR-BI. This binding resulted in an intracellular accumulation of HDL-derived [3H]cholesterol esters without internalization or degradation of 125I-apolipoprotein. CLA-1 was strongly expressed in the adrenal gland and was also abundant in liver and testis, suggesting that CLA-1, like SR-BI, could play a role in the metabolism of HDL. However, CLA-1 was also expressed in monocytes and, like SR-BI, recognized modified forms of low density lipoproteins as well as native LDL and anionic phospholipids. These findings suggest that CLA-1 might have additional physiological functions. We found that CLA-1 recognizes apoptotic thymocytes. Our results demonstrate that CLA-1, a close structural homologue of SR-BI, is also functionally related to SR-BI and may play an important role as a “docking receptor” for HDL in connection with selective uptake of cholesterol esters. An additional role in recognition of damaged cells is suggested by these studies.


Journal of Clinical Investigation | 2000

Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator–activated receptor γ

Ki Hoon Han; Mi Kyung Chang; Agnès Boullier; Simone R. Green; Andrew G. Li; Christopher K. Glass; Oswald Quehenberger

The CCR2-mediated recruitment of monocytes into the vessel wall plays an important role in all stages of atherosclerosis. In recent studies, we have shown that lipoproteins can modulate CCR2 expression and have identified native LDL as a positive regulator. In contrast, oxidized LDL (OxLDL), which is mainly formed in the aortic intima, reduces CCR2 expression, promotes monocyte retention, and may cause pathological accumulation of monocytes in the vessel wall. We now provide evidence that OxLDL reduces monocyte CCR2 expression by activating intracellular signaling pathways that may involve peroxisome proliferator-activated receptor gamma (PPARgamma). Receptor-mediated uptake of the lipoprotein particle was required and allows for delivery of the exogenous ligand to the nuclear receptor. The suppression of CCR2 expression by OxLDL was mediated by lipid components of OxLDL, such as the oxidized linoleic acid metabolites 9-HODE and 13-HODE, known activators of PPARgamma. Modified apoB had no such effect. Consistent with a participation of the PPARgamma signaling pathway, BRL49653 reduced CCR2 expression in freshly isolated human monocytes ex vivo and in circulating mouse monocytes in vivo. These results implicate PPARgamma in the inhibition of CCR2 gene expression by oxidized lipids, which may help retain monocytes at sites of inflammation, such as the atherosclerotic lesion.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

Chemokine Receptor CCR2 Expression and Monocyte Chemoattractant Protein-1–Mediated Chemotaxis in Human Monocytes A Regulatory Role for Plasma LDL

Ki Hoon Han; Rajendra K. Tangirala; Simone R. Green; Oswald Quehenberger

The subendothelial accumulation of macrophage-derived foam cells is one of the hallmarks of atherosclerosis. The recruitment of monocytes to the intima requires the interaction of locally produced chemokines with specific cell surface receptors, including the receptor (CCR2) for monocyte chemoattractant protein-1 (MCP-1). We have previously reported that monocyte CCR2 gene expression and function are effectively downregulated by proinflammatory cytokines. In this study we identified low density lipoprotein (LDL) as a positive regulator of CCR2 expression. Monocyte CCR2 expression was dramatically increased in hypercholesterolemic patients compared with normocholesterolemic controls. Similarly, incubation of human THP-1 monocytes with LDL induced a rapid increase in CCR2 mRNA and protein. By 24 hours the number of cell surface receptors was doubled, causing a 3-fold increase in the chemotactic response to MCP-1. The increase in CCR2 expression and chemotaxis was promoted by native LDL but not by oxidized LDL. Oxidized LDL rapidly downregulated CCR2 expression, whereas reductively methylated LDL, which does not bind to the LDL receptor, had only modest effects on CCR2 expression. A neutralizing anti-LDL receptor antibody prevented the effect of LDL, suggesting that binding and internalization of LDL were essential for CCR2 upregulation. The induction of CCR2 expression appeared to be mediated by LDL-derived cholesterol, because cells treated with free cholesterol also showed increased CCR2 expression. These data suggest that elevated plasma LDL levels in conditions such as hypercholesterolemia enhance monocyte CCR2 expression and chemotactic response and potentially contribute to increased monocyte recruitment to the vessel wall in chronic inflammation and atherogenesis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

Minimally Oxidized Low-Density Lipoprotein Increases Expression of Scavenger Receptor A, CD36, and Macrosialin in Resident Mouse Peritoneal Macrophages

Hiroshi Yoshida; Oswald Quehenberger; Nonna Kondratenko; Simone R. Green; Daniel Steinberg

Fully oxidized LDL (OxLDL) is believed to contribute to atherogenesis in part by virtue of uptake into macrophages via specific scavenger receptors. This phenomenon results in the formation of cholesterol-loaded foam cells, a major component of atherosclerotic lesions. The present study is directed at examining the effects of OxLDL and minimally oxidized LDL (MM-LDL) on scavenger receptor expression and activity in mouse peritoneal resident macrophages. Macrophages were preincubated with MM-LDL or OxLDL at concentrations of 25 or 50 microg/mL for 24 to 48 hours, after which their ability to bind and take up 125I-OxLDL or 125I-acetylated LDL (AcLDL) was determined. MM-LDL pretreatment induced a clear increase of cell association and degradation of 125I-OxLDL and 125I-AcLDL. Pretreatment with OxLDL also enhanced scavenger receptor activity, but to a lesser degree. Neither native LDL nor AcLDL had any effect. Scatchard analysis showed that preincubation with 50 microg/mL MM-LDL for 48 hours increased the Bmax of 125I-OxLDL and 125I-AcLDL by 139% and 154%, respectively, without significantly changing their affinity. Lipids extracted from MM-LDL also significantly induced scavenger receptor activity, but to a lesser extent than did intact MM-LDL. MM-LDL pretreatment increased both mRNA levels and protein levels of scavenger receptor A, CD36, and macrosialin. On the other hand, OxLDL pretreatment increased expression of macrosialin only. These results, showing that MM-LDL can upregulate scavenger receptor expression in mouse resident peritoneal macrophages, suggest that clearance of OxLDL by macrophages in lesions is more effective, in part because the OxLDL precursor, MM-LDL, primes the macrophage for foam cell generation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Expression of Fractalkine (CX3CL1) and its Receptor, CX3CR1, Is Elevated in Coronary Artery Disease and Is Reduced During Statin Therapy

Jan Kristian Damås; Agnès Boullier; Torgun Wæhre; Camilla Smith; Wiggo J. Sandberg; Simone R. Green; Pål Aukrust; Oswald Quehenberger

Objective—Recent data derived primarily from studies in animal models suggest that fractalkine (CX3CL1) and its cognate receptor, CX3CR1, play a role in atherogenesis. We, therefore, hypothesized that enhanced CX3CL1/CX3CR1 expression may promote atherogenesis in patients with coronary artery disease (CAD). Methods and Results—We examined the plasma levels of CX3CL1 and CX3CR1 expression in peripheral blood mononuclear cells (PBMC) in various CAD populations (30 patients with previous myocardial infarction, 40 patients with stable angina, 40 patients with unstable angina, and a total of 35 controls) and used various experimental approaches to characterize CX3CL1-mediated leukocyte responses. We found that the plasma levels of CX3CL1 are greatly increased in CAD, particularly in unstable disease. The parallel increase of CX3CR1 expression in PBMC was predominantly attributable to an expansion of the CX3CR1+CD3+CD8+ T cell subset and was associated with enhanced chemotactic, adhesive, and inflammatory responses to CX3CL1. Statin therapy for 6 months reduced the expression of CX3CL1 and CX3CR1, reaching statistical significance for both parameters only during aggressive (atorvastatin, 80 mg qd) but not conventional (simvastatin, 20 mg qd) therapy. Consequently, the functional responses of the PBMC to CX3CL1 including migration, adhesion, and secretion of interleukin-8 were attenuated by the treatments. Conclusion—Our results suggest that the CX3CL1/CX3CR1 dyad may contribute to atherogenesis and plaque destabilization in human CAD.


Journal of the American College of Cardiology | 2011

Targeted Iron Oxide Particles for In Vivo Magnetic Resonance Detection of Atherosclerotic Lesions With Antibodies Directed to Oxidation-Specific Epitopes

Karen C. Briley-Saebo; Young Seok Cho; Peter X. Shaw; Sung Kee Ryu; Venkatesh Mani; Stephen D. Dickson; Ehsan Izadmehr; Simone R. Green; Zahi A. Fayad; Sotirios Tsimikas

OBJECTIVES The aim of this study was to determine whether iron oxide particles targeted to oxidation-specific epitopes image atherosclerotic lesions. BACKGROUND Oxidized low-density lipoprotein plays a major role in atherosclerotic plaque progression and destabilization. Prior studies indicate that gadolinium micelles labeled with oxidation-specific antibodies allow for in vivo detection of vulnerable plaques with magnetic resonance imaging (MRI). However, issues related to biotransformation/retention of gadolinium might limit clinical translation. Iron oxides are recognized as safe and effective contrast agents for MRI. Because the efficacy of passively targeted iron particles remains variable, it was hypothesized that iron particles targeted to oxidation-specific epitopes might increase the utility of this platform. METHODS Lipid-coated ultra-small superparamagnetic iron particles (LUSPIOs) (<20 nm) and superparamagnetic iron particles (<40 nm) were conjugated with antibodies targeted to either malondialdehyde-lysine or oxidized phospholipid epitopes. All formulations were characterized, and their in vivo efficacy evaluated in apolipoprotein E deficient mice 24 h after bolus administration of a 3.9-mg Fe/kg dose with MRI. In vivo imaging data were correlated with the presence of oxidation-specific epitopes with immunohistochemistry. RESULTS MRI of atherosclerotic lesions, as manifested by signal loss, was observed after administration of targeted LUSPIOs. Immunohistochemistry confirmed the presence of malondialdehyde-epitopes and iron particles. Limited signal attenuation was observed for untargeted LUSPIOs. Additionally, no significant arterial wall uptake was observed for targeted or untargeted lipid-coated superparamagnetic iron oxide particles, due to their limited ability to penetrate the vessel wall. CONCLUSIONS This study demonstrates that LUSPIOs targeted to oxidation-specific epitopes image atherosclerotic lesions and suggests a clinically translatable platform for the detection of atherosclerotic plaque.


Journal of Lipid Research | 2013

Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a)

Gregor Leibundgut; Corey A. Scipione; Huiyong Yin; Matthias Schneider; Michael B. Boffa; Simone R. Green; Xiaohong Yang; Edward A. Dennis; Joseph L. Witztum; Marlys L. Koschinsky; Sotirios Tsimikas

Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.


Journal of Clinical Investigation | 2011

In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish

Longhou Fang; Simone R. Green; Ji Sun Baek; Sang Hak Lee; Felix Ellett; Elena Deer; Graham J. Lieschke; Joseph L. Witztum; Sotirios Tsimikas; Yury I. Miller

Oxidative modification of LDL is an early pathological event in the development of atherosclerosis. Oxidation events such as malondialdehyde (MDA) formation may produce specific, immunogenic epitopes. Indeed, antibodies to MDA-derived epitopes are widely used in atherosclerosis research and have been demonstrated to enable cardiovascular imaging. In this study, we engineered a transgenic zebrafish with temperature-inducible expression of an EGFP-labeled single-chain human monoclonal antibody, IK17, which binds to MDA-LDL, and used optically transparent zebrafish larvae for imaging studies. Feeding a high-cholesterol diet (HCD) supplemented with a red fluorescent lipid marker to the transgenic zebrafish resulted in vascular lipid accumulation, quantified in live animals using confocal microscopy. After heat shock-induced expression of IK17-EGFP, we measured the time course of vascular accumulation of IK17-specific MDA epitopes. Treatment with either an antioxidant or a regression diet resulted in reduced IK17 binding to vascular lesions. Interestingly, homogenates of IK17-EGFP-expressing larvae bound to MDA-LDL and inhibited MDA-LDL binding to macrophages. Moreover, sustained expression of IK17-EGFP effectively prevented HCD-induced lipid accumulation in the vascular wall, suggesting that the antibody itself may have therapeutic effects. Thus, we conclude that HCD-fed zebrafish larvae with conditional expression of EGFP-labeled oxidation-specific antibodies afford an efficient method of testing dietary and/or other therapeutic antioxidant strategies that may ultimately be applied to humans.


Journal of Biological Chemistry | 1999

Role of the First Extracellular Loop in the Functional Activation of CCR2 THE FIRST EXTRACELLULAR LOOP CONTAINS DISTINCT DOMAINS NECESSARY FOR BOTH AGONIST BINDING AND TRANSMEMBRANE SIGNALING

Ki Hoon Han; Simone R. Green; Rajendra K. Tangirala; Seiya Tanaka; Oswald Quehenberger

The physiological cellular responses to monocyte chemoattractant protein-1 (MCP-1), a potent chemotactic and activating factor for mononuclear leukocytes, are mediated by specific binding to CCR2. The aim of this investigation is to identify receptor microdomains that are involved in high affinity agonist binding and receptor activation. The results from our functional studies in which we utilized neutralizing antisera against CCR2 are consistent with a multidomain binding model, previously proposed by others. The first extracellular loop was of particular interest, because in addition to a ligand-binding domain it contained also information for receptor activation, crucial for transmembrane signaling. Replacement of the first extracellular loop of CCR2 with the corresponding region of CCR1 decreased the MCP-1 binding affinity about 10-fold and prevented transmembrane signaling. A more detailed analysis by site-directed mutagenesis revealed that this receptor segment contains two distinct microdomains. The amino acid residues Asn104 and Glu105 are essential for high affinity agonist binding but are not involved in receptor activation. In contrast, the charged amino acid residue His100 does not contribute to ligand binding but is vital for receptor activation and initiation of transmembrane signaling. We hypothesize that the interaction of agonist with this residue initiates the conformational switch that allows the formation of the functional CCR2-G protein complex.


Journal of Immunology | 2006

The CC chemokine MCP-1 stimulates surface expression of CX3CR1 and enhances the adhesion of monocytes to Fractalkine/CX3CL1 via p38 MAPK

Simone R. Green; Ki Hoon Han; Yiming Chen; Felicidad Almazan; Israel F. Charo; Yury I. Miller; Oswald Quehenberger

The membrane-anchored form of CX3CL1 has been proposed as a novel adhesion protein for leukocytes. This functional property of CX3CL1 is mediated through CX3CR1, a chemokine receptor expressed predominantly on circulating white blood cells. Thus far, it is still uncertain at what stage of the trafficking process CX3CR1 becomes importantly involved and how the CX3CR1-dependent adhesion of leukocytes is regulated during inflammation. The objective of this study was to examine the functional effects of chemokine stimulation on CX3CR1-mediated adhesion of human monocytes. Consistent with previous reports, our data indicate that the activity of CX3CR1 on resting monocytes is sufficient to mediate cell adhesion to CX3CL1. However, the basal, nonstimulated adhesion activity is low, and we hypothesized that like the integrins, CX3CR1 may require a preceding activation step to trigger firm leukocyte adhesion. Compatible with this hypothesis, stimulation of monocytes with MCP-1 significantly increased their adhesion to immobilized CX3CL1, under both static and physiological flow conditions. The increase of the adhesion activity was mediated through CCR2-dependent signaling and obligatory activation of the p38 MAPK pathway. Stimulation with MCP-1 also induced a rapid increase of CX3CR1 protein on the cell surface. Inhibition of the p38 MAPK pathway prevented this increase of CX3CR1 surface expression and blunted the effect of MCP-1 on cell adhesion, indicating a causal link between receptor surface density and adhesion activity. Together, our data suggest that a chemokine signal is required for firm CX3CR1-dependent adhesion and demonstrate that CCR2 is an important regulator of CX3CL1-dependent leukocyte adhesion.

Collaboration


Dive into the Simone R. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki Hoon Han

University of California

View shared research outputs
Top Co-Authors

Avatar

Agnès Boullier

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiming Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Calvin Yeang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge