Simone Rosseau
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Rosseau.
Nature Medicine | 2006
Ulrike Fiedler; Yvonne Reiss; Marion Scharpfenecker; Verena Grunow; Stefanie Koidl; Gavin Thurston; Nicholas W. Gale; Martin Witzenrath; Simone Rosseau; Norbert Suttorp; Astrid Sobke; Matthias Herrmann; Klaus T. Preissner; Peter Vajkoczy; Hellmut G. Augustin
The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1–mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus–induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2−/− mice. Intravital microscopy showed normal TNF-α–induced leukocyte rolling in the vasculature of Angpt2−/−mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-α and modulating TNF-α–induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.
Infection and Immunity | 2005
Sven Hammerschmidt; Sonja Wolff; Andreas C. Hocke; Simone Rosseau; Ellruth Müller; Manfred Rohde
ABSTRACT The capsular polysaccharide of Streptococcus pneumoniae represents an important virulence factor and protects against phagocytosis. In this study the amount of capsular polysaccharide present on the bacterial surface during the infection process was illustrated by electron microscopic studies. After infection of A549 cells (type II pneumocytes) and HEp-2 epithelial cells a modified fixation method was used that allowed visualization of the state of capsule expression. This modified fixation procedure did not require the use of capsule-specific antibodies. Visualization of pneumococci in intimate contact and invading cells demonstrated that pneumococci were devoid of capsular polysaccharide. Pneumococci not in contact with the cells did not show alterations in capsular polysaccharide. After infection of the cells, invasive pneumococci of different strains and serotypes were recovered. Single colonies of these recovered pneumococci exhibited an up-to-105-fold-enhanced capacity to adhere and an up-to-104-fold-enhanced capacity to invade epithelial cells. Electron microscopic studies using a lysine-ruthenium red (LRR) fixation procedure or cryo-field emission scanning electron microscopy revealed a reduction in capsular material, as determined in detail for a serotype 3 pneumococcal strain. The amount of polysaccharide in the serotype 3 capsule was also determined after intranasal infection of mice. This study illustrates for the first time the phenotypic variation of the polysaccharide capsule in the initial phase of pneumococcal infections. The modified LRR fixation allowed monitoring of the state of capsule expression of pathogens during the infectious process.
Journal of Biological Chemistry | 2004
Bernd Schmeck; Janine Zahlten; K. Moog; Vincent van Laak; Sylvia Huber; Andreas C. Hocke; Bastian Opitz; Elke Hoffmann; Michael Kracht; Jens Zerrahn; Sven Hammerschmidt; Simone Rosseau; Norbert Suttorp; Stefan Hippenstiel
Streptococcus pneumoniae is the major cause of community-acquired pneumonia and one of the most common causes of death by infectious disease in industrialized countries. Little is known concerning the mechanisms of target cell activation in this disease. The present study shows that NF-κB and p38 MAPK signaling pathways contribute to chemokine synthesis by lung epithelial cells in response to pneumococci. In infected lungs of mice pneumococci stimulate expression of the interleukin (IL)-8 homolog keratinocyte-derived chemokine and granulocyte-macrophage colony-stimulating factor, as well as activate p38 MAPK. Human bronchial epithelium was chosen as a cellular model, because it establishes the first barrier against pathogens, and little is known about its function in innate immunity. Pneumococci infection induces expression of IL-8 and granulocyte-macrophage colony-stimulating factor as well as activation of p38 MAPK in human bronchial epithelial cells (BEAS-2B). Inhibition of p38 MAPK activity by SB202190 and SB203580 blocks pneumococci-induced cytokine release. In mouse lungs in vivo as well as in cultured cells, pneumococci activate NF-κBinanIκB kinase-dependent manner. Inhibition of p38 MAPK by chemical inhibitors or by RNA interference targeting p38α reduces pneumococci-induced NF-κB-dependent gene transcription. Blockade of p38 activity did not affect inducible nuclear translocation and recruitment of NF-κB/RelA to the IL-8 promotor but did reduce the level of phosphorylated RelA (serine 536) at IL-8 promotor and inhibited pneumococci-mediated recruitment of RNA polymerase II to IL-8 promotor. Thus, p38 MAPK contributes to pneumococci-induced chemokine transcription by modulating p65 NF-κB-mediated transactivation.
Critical Care Medicine | 2006
Martin Witzenrath; Birgitt Gutbier; Andreas C. Hocke; Bernd Schmeck; Stefan Hippenstiel; Katharina Berger; Timothy J. Mitchell; Juan R. de los Toyos; Simone Rosseau; Norbert Suttorp; Hartwig Schütte
Objective:Acute respiratory failure is a significant complication of severe pneumococcal pneumonia. In a mouse model, we observed early-onset lung microvascular leakage after pulmonary infection with Streptococcus pneumoniae, and we hypothesized that the important virulence factor pneumolysin may be the direct causative agent. Design:Controlled, in vivo, ex vivo, and in vitro laboratory study. Setting:Laboratory. Subjects:Female mice, 8–12 wks old. Interventions:Ventilated and blood-free perfused murine lungs were challenged with recombinant pneumolysin via the airways as well as via the vascular bed. In addition, we analyzed the impact of pneumolysin on electrical cell impedance and hydraulic conductivity of human umbilical vein endothelial cell (HUVEC) and alveolar epithelial cell (A549) monolayers. Measurements and Main Results:Aerosolized pneumolysin dose-dependently increased capillary permeability with formation of severe lung edema but did not affect pulmonary vascular resistance. Intravascular pneumolysin caused an impressive dose-dependent increase in pulmonary vascular resistance and in lung microvascular permeability. By immunohistochemistry, pneumolysin was detected mainly in endothelial cells of pulmonary arterial vessels, which concomitantly displayed strong vasoconstriction. Moreover, pneumolysin increased permeability of HUVEC and A549 monolayers. Interestingly, immunofluorescence of endothelial cell monolayers exposed to pneumolysin showed gap formation and moderate stress fiber generation. Conclusions:Pneumolysin may play a central role for early-onset acute lung injury due to severe pneumococcal pneumonia by causing impairment of pulmonary microvascular barrier function and severe pulmonary hypertension.
Methods in Enzymology | 1994
Werner Seeger; Dieter Walmrath; Friedrich Grimminger; Simone Rosseau; Hartwig Schütte; Hans-Joachim Krämer; Leander Ermert; Ladislau Kiss
Publisher Summary The adult respiratory distress syndrome (ARDS) is a persisting problem in modern intensive care medicine, still resulting in a high fatality rate. This chapter presents several studies that have demonstrated that, among the different initial events involved, sepsis and polytrauma represent the major risk factors for the development of this condition. Lung injury is triggered via mechanisms still not fully elucidated. Severe disturbances in pulmonary physiology occur, including a rise of pulmonary vascular resistance and an increase in the permeability of the capillary-endothelial and the alveoloepithelial barrier. These two key alterations result in the formation of protein-rich interstitial and subsequently intraalveolar edema, followed by deterioration of alveolar surfactant function. Mismatch in the adaptation of perfusion and ventilation because of “anarchic” vasoconstriction and vascular occlusion increase in shunt flow because of loss of alveolar spaces (edema, atelectasis), and hindrance of diffusion of gases results in severe deterioration of gas exchange with arterial hypoxemia. This early “exudative” phase of ARDS may then be followed by a protracted “proliferative” phase, with remodeling of lung structure and development of widespread lung fibrosis within a few weeks. Isolated, perfused lungs have long been used by investigators interested in the physiological, biochemical, and metabolic aspects of this complex organ. This technique has also been adopted to study pathogenetic events underlying the exudative phase of ARDS.
Critical Care Medicine | 2009
Martin Witzenrath; Bernd Schmeck; Jan M. Doehn; Thomas Tschernig; Janine Zahlten; Jutta M. Loeffler; Mv Zemlin; Holger C. Müller; Birgitt Gutbier; Hartwig Schütte; Stefan Hippenstiel; Vincent A. Fischetti; Norbert Suttorp; Simone Rosseau
Objectives:Community-acquired pneumonia is a very common infectious disease associated with significant morbidity and mortality. Streptococcus pneumoniae is the predominant pathogen in this disease, and pneumococcal resistance to multiple antibiotics is increasing. The recently purified bacteriophage endolysin Cpl-1 rapidly and specifically kills pneumococci on contact. The aim of this study was to determine the therapeutic potential of Cpl-1 in a mouse model of severe pneumococcal pneumonia. Design:Controlled, in vivo laboratory study. Subjects:Female C57/Bl6 mice, 8–12 weeks old. Interventions:Mice were transnasally infected with pneumococci and therapeutically treated with Cpl-1 or amoxicillin by intraperitoneal injections starting 24 or 48 hours after infection. Measurements and Main Results:Judged from clinical appearance, decreased body weight, reduced dynamic lung compliance and Pao2/Fio2 ratio, and morphologic changes in the lungs, mice suffered from severe pneumonia at the onset of therapy. When treatment was commenced 24 hours after infection, 100% Cpl-1–treated and 86% amoxicillin-treated mice survived otherwise fatal pneumonia and showed rapid recovery. When treatment was started 48 hours after infection, mice had developed bacteremia, and three of seven (42%) Cpl-1–treated and five of seven (71%) amoxicillin-treated animals survived. Cpl-1 dramatically reduced pulmonary bacterial counts, and prevented bacteremia, systemic hypotension, and lactate increase when treatment commenced at 24 hours. In vivo, treatment with Cpl-1 or amoxicillin effectively reduced counts of penicillin-susceptible pneumococci. The inflammatory response in Cpl-1–and amoxicillin-treated mice was lower than in untreated mice, as determined by multiplex cytokine assay of lung and blood samples. In human epithelial cell cultures, lysed bacteria evoked less proinflammatory cytokine release and cell death, as compared with viable bacteria. Conclusions:Cpl-1 may provide a new therapeutic option in the treatment of pneumococcal pneumonia.
Journal of Immunology | 2005
Bernd Schmeck; Wiebke Beermann; Vincent van Laak; Janine Zahlten; Bastian Opitz; Martin Witzenrath; Andreas C. Hocke; Trinad Chakraborty; Michael Kracht; Simone Rosseau; Norbert Suttorp; Stefan Hippenstiel
Epigenetic histone modifications contribute to the regulation of eukaryotic gene transcription. The role of epigenetic regulation in immunity to intracellular pathogens is poorly understood. We tested the hypothesis that epigenetic histone modifications influence cytokine expression by intracellular bacteria. Intracellular Listeria monocytogenes, but not noninvasive Listeria innocua, induced release of distinct CC and CXC chemokines, as well as Th1 and Th2 cytokines and growth factors by endothelial cells. Cytokine expression was in part dependent on p38 MAPK and MEK1. We analyzed global histone modification and modifications in detail at the gene promoter of IL-8, which depended on both kinase pathways, and of IFN-γ, which was not blocked by kinase inhibition. Intracellular Listeria induced time-dependent acetylation (lysine 8) of histone H4 and phosphorylation/acetylation (serine 10/lysine 14) of histone H3 globally and at the il8 promoter in HUVEC, as well as recruitment of the histone acetylase CREB-binding protein. Inhibitors of p38 MAPK and MEK1 reduced lysine 8 acetylation of histone H4 and serine 10/lysine 14 phosphorylation/acetylation of histone H3 in Listeria-infected endothelial cells and disappearance of histone deacetylase 1 at the il8 promoter in HUVEC. In contrast, IFN-γ gene transcription was activated by Listeria monocytogenes independent of p38 MAPK and MEK1, and histone phosphorylation/acetylation remained unchanged in infected cells at the IFN-γ promoter. Specific inhibition of histone deacetylases by trichostatin A increased Listeria-induced expression of IL-8, but not of IFN-γ, underlining the specific physiological impact of histone acetylation. In conclusion, MAPK-dependent epigenetic modifications differentially contributed to L. monocytogenes-induced cytokine expression by human endothelial cells.
The Journal of Infectious Diseases | 2000
Hans-Ulrich Jahn; Matthias Kriüll; Frederik N. Wuppermann; Andrea C. Klucken; Simone Rosseau; Joachim Seybold; Johannes H. Hegemann; Christian A. Jantos; Norbert Suttorp
The activation of primary human airway epithelial cells (HAECs) and of the bronchial epithelial cell line BEAS-2B by Chlamydia pneumoniae, an important respiratory pathogen, was characterized. A time-dependent enhanced release of interleukin (IL)-8 and prostaglandin-E(2) and an increased expression of the epithelial adhesion molecule intercellular adhesion molecule-1 (ICAM-1), followed by subsequent transepithelial migration of polymorphonuclear neutrophils (PMN), were also demonstrated. The transepithelial PMN migration could be blocked by an anti-ICAM-1 monoclonal antibody (MAb) but not by MAbs against IL-8. In addition, there was an enhanced C. pneumoniae-mediated activation of NF-kappaB within 30-60 min in HAECs and BEAS-2B, which was followed by increases in mRNA synthesis of IL-8, ICAM-1, and cyclooxygenase-2, with maximal effects occurring 2 h after infection. Thus, C. pneumoniae infects and activates HAECs and BEAS-2B and therefore may be able to trigger a cascade of pro- and anti-inflammatory reactions during chlamydial infections.
Infection and Immunity | 2004
Bernd Schmeck; Ralph Gross; Phillipe Dje NGuessan; Andreas C. Hocke; Sven Hammerschmidt; Timothy J. Mitchell; Simone Rosseau; Norbert Suttorp; Stefan Hippenstiel
ABSTRACT Streptococcus pneumoniae is the major pathogen of community-acquired pneumonia and one of the most common causes of death due to infectious diseases in industrialized countries. Lung epithelium lines the airways and constitutes the first line of innate defense against respiratory pathogens. Little is known about the molecular interaction of pneumococci with lung epithelial cells. Apoptosis of lung epithelium is involved in some bacterial lung infections. In this study different pneumococcal strains specifically induced either apoptotic or necrotic death of human alveolar and bronchial epithelial cells. Pneumococcus-induced apoptosis did not depend on the virulence factors pneumolysin and H2O2. Apoptotic cells showed increased activity of caspases 6, 8, and 9 but not increased activity of caspase 3. Moreover, programmed cell death could be strongly reduced by a caspase 6 inhibitor and a pan-caspase inhibitor. Inhibitors of calpain and chymotrypsin- and trypsin-like proteases also reduced pneumococcus-induced apoptosis. Furthermore, pneumococcus-infected human alveolar epithelial cells showed Bid cleavage and reduced levels of Bcl2 and Bax. Overexpression of Bcl2 in these cells reduced apoptosis significantly. Thus, pneumococci induced apoptosis of human alveolar and bronchial epithelial cells. Programmed cell death was executed by caspase 6 and noncaspase proteases, but not by caspase 3, and could be blocked by overexpression of Bcl2.
Thrombosis and Haemostasis | 2005
Philippe Dje N’Guessan; Bernd Schmeck; Abena Ayim; Andreas C. Hocke; Bernhard Brell; Sven Hammerschmidt; Simone Rosseau; Norbert Suttorp; Stefan Hippenstiel
Streptococcus pneumoniae is the major pathogen of community-acquired pneumonia and a common cause of otitis, meningitis and sepsis. During pneumococci infection accompanied with bacterial invasion and hematogenous spreading, the endothelium is directly targeted by pneumococci and their virulence factors. Therefore, we tested the hypothesis that pneumococci induced endothelial apoptosis. Unencapsulated R6x pneumococci strongly induced apoptosis of human endothelial cells both from lung microvasculature and umbilical vein, whereas an encapsulated strain D39 mainly led to necrotic cell death. Deletion of the gene coding for pneumolysin reduced pneumococci-induced apoptosis in HUVEC. Furthermore, N-acetyl-L-cysteine, an antioxidant thiol, significantly reduced apoptosis caused by R6x, and LDH release induced by D39, pointing to a role for reactive oxygen species in the pathogenesis. Apoptotic cells showed increased cleavage and activity of caspases 6 and 9 but only late activation of caspase 3. Programmed cell death could be strongly reduced by pan-caspase inhibitor zVAD. Reduced levels of Bcl2 and cytosolic increase of apoptosis-inducing factor in pneumococci-infected cells implicated involvement of mitochondrial death pathways. Caspase activation and apoptosis were abolished by cAMP elevation. Moreover, p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase were activated in pneumococci-infected cells and inhibitors of both kinases strongly reduced pneumococci-induced caspase activation and apoptosis. Hence, kinase- and caspase-dependence of pneumococci-induced endothelial apoptosis may bear relevance to novel therapeutic approaches to pneumococci-related disease.