Simone S. Riedel
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone S. Riedel.
Carcinogenesis | 2013
Martin Chopra; Simone S. Riedel; Marlene Biehl; Stefanie Krieger; Viktoria von Krosigk; Carina A. Bäuerlein; Christian Brede; Ana-Laura Jordán Garrote; Sabrina Kraus; Viktoria Schäfer; Miriam Ritz; Katharina Mattenheimer; Axelle Degla; Anja Mottok; Hermann Einsele; Harald Wajant; Andreas Beilhack
The cytokine tumor necrosis factor (TNF) has pleiotropic functions both in normal physiology and disease. TNF signals by the virtue of two cell surface receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Exogenous TNF promotes experimental metastasis in some models, yet the underlying mechanisms are poorly understood. To study the contribution of host TNFR1 and TNFR2 on tumor cell progression and metastasis, we employed a syngeneic B16F10 melanoma mouse model of lung metastasis combined with in vivo bioluminescence imaging. Treatment of tumor-bearing mice with recombinant human TNF resulted in a significant increase in tumor burden and metastatic foci. This correlated with an increase in pulmonary regulatory CD4(+)/Foxp3(+) T cells. TNF caused an expansion of regulatory T (Treg) cells in vitro in a TNFR2-dependent manner. To assess the contribution of immune cell expression of endogenous TNF and its two receptors on B16F10 metastasis, we generated bone marrow chimeras by reconstituting wild-type mice with bone marrow from different knockout mice. Loss of either TNF or TNFR2 on immune cells resulted in decreased B16F10 metastasis and lower numbers of Treg cells within the lungs of these animals. Selective depletion of Treg cells attenuated metastasis even in conjunction with TNF treatment. We propose a novel mechanism in which TNF activates TNFR2 on Treg cells and thereby expands this immunosuppressive immune cell population. Loss of either TNF or TNFR2 prevents the accumulation of Treg cells and results in a less tolerogenic environment, enabling the immune system to control B16F10 tumor metastasis and growth.
British Journal of Haematology | 2013
Tanja Heimberger; Mindaugas Andrulis; Simone S. Riedel; Thorsten Stühmer; Heike Schraud; Andreas Beilhack; Thomas Bumm; Bjarne Bogen; Hermann Einsele; Ralf C. Bargou; Manik Chatterjee
The heat shock transcription factor 1 (HSF1) has recently been reported to promote malignant transformation and growth. Here we provide experimental evidence for a role of HSF1 in the pathogenesis of multiple myeloma (MM). Immunohistochemical analyses revealed that HSF1 was overexpressed in half of the investigated MM samples, including virtually all cases with extramedullary manifestations or anaplastic morphology. HSF1 function was inhibited either by siRNA‐mediated knockdown or pharmacologically through treatment with triptolide. Both approaches caused depletion of HSF1, lowered the constitutively high expression of a multitude of protective HSPs (such as HSP90, HSP70, HSP40 and HSP27), induced apoptosis in human MM cells in vitro, and strongly reduced MM tumour growth in vivo. Furthermore, we observed that treatment‐induced upregulation of HSPs after proteasome or HSP90 inhibition was critically dependent on HSF1. Importantly, the apoptotic effects of the HSP90 inhibitor NVP‐AUY922 or the proteasome inhibitor bortezomib were strongly enhanced in combination with triptolide, suggesting a salvage role of HSF1‐dependent HSP induction in response to drug treatment. Collectively, our data indicate that inhibition of HSF1 affects multiple protective HSPs and might therefore represent a therapeutic strategy – in particular in combination with proteasome or HSP90 inhibitors.
Cell Reports | 2016
Etienne Danis; Taylor Yamauchi; Kristen Echanique; Xi Zhang; Jessica Haladyna; Simone S. Riedel; Nan Zhu; Huafeng Xie; Stuart H. Orkin; Scott A. Armstrong; Kathrin M. Bernt; Tobias Neff
SUMMARY Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.
PLOS ONE | 2012
Simone S. Riedel; Anja Mottok; Christian Brede; Carina A. Bäuerlein; Ana-Laura Jordán Garrote; Miriam Ritz; Katharina Mattenheimer; Andreas Rosenwald; Hermann Einsele; Bjarne Bogen; Andreas Beilhack
Background Multiple myeloma (MM) is a B-cell malignancy, where malignant plasma cells clonally expand in the bone marrow of older people, causing significant morbidity and mortality. Typical clinical symptoms include increased serum calcium levels, renal insufficiency, anemia, and bone lesions. With standard therapies, MM remains incurable; therefore, the development of new drugs or immune cell-based therapies is desirable. To advance the goal of finding a more effective treatment for MM, we aimed to develop a reliable preclinical MM mouse model applying sensitive and reproducible methods for monitoring of tumor growth and metastasis in response to therapy. Material and Methods A mouse model was created by intravenously injecting bone marrow-homing mouse myeloma cells (MOPC-315.BM) that expressed luciferase into BALB/c wild type mice. The luciferase in the myeloma cells allowed in vivo tracking before and after melphalan treatment with bioluminescence imaging (BLI). Homing of MOPC-315.BM luciferase+ myeloma cells to specific tissues was examined by flow cytometry. Idiotype-specific myeloma protein serum levels were measured by ELISA. In vivo measurements were validated with histopathology. Results Strong bone marrow tropism and subsequent dissemination of MOPC-315.BM luciferase+ cells in vivo closely mimicked the human disease. In vivo BLI and later histopathological analysis revealed that 12 days of melphalan treatment slowed tumor progression and reduced MM dissemination compared to untreated controls. MOPC-315.BM luciferase+ cells expressed CXCR4 and high levels of CD44 and α4β1 in vitro which could explain the strong bone marrow tropism. The results showed that MOPC-315.BM cells dynamically regulated homing receptor expression and depended on interactions with surrounding cells. Conclusions This study described a novel MM mouse model that facilitated convenient, reliable, and sensitive tracking of myeloma cells with whole body BLI in living animals. This model is highly suitable for monitoring the effects of different treatment regimens.
Journal of Clinical Investigation | 2012
Christian Brede; Mike Friedrich; Ana-Laura Jordán-Garrote; Simone S. Riedel; Carina A. Bäuerlein; Katrin G. Heinze; Tobias Bopp; Stephan Schulz; Anja Mottok; Carolin Kiesel; Katharina Mattenheimer; Miriam Ritz; Viktoria von Krosigk; Andreas Rosenwald; Hermann Einsele; Robert S. Negrin; Gregory S. Harms; Andreas Beilhack
Understanding the spatiotemporal changes of cellular and molecular events within an organism is crucial to elucidate the complex immune processes involved in infections, autoimmune disorders, transplantation, and neoplastic transformation and metastasis. Here we introduce a novel multicolor light sheet fluorescence microscopy (LSFM) approach for deciphering immune processes in large tissue specimens on a single-cell level in 3 dimensions. We combined and optimized antibody penetration, tissue clearing, and triple-color illumination to create a method for analyzing intact mouse and human tissues. This approach allowed us to successfully quantify changes in expression patterns of mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and T cell responses in Peyers patches following stimulation of the immune system. In addition, we employed LSFM to map individual T cell subsets after hematopoietic cell transplantation and detected rare cellular events. Thus, we present a versatile imaging technology that should be highly beneficial in biomedical research.
Journal of Surgical Research | 2013
Andreas Thalheimer; Doreen Korb; Lars Bönicke; Armin Wiegering; Bettina Mühling; Manuela Schneider; Silvia Koch; Simone S. Riedel; Ct Germer; Andreas Beilhack; Stephanie Brändlein; Christoph Otto
BACKGROUND Bioluminescence imaging (BLI) is an ideal tool for noninvasive, quantitative monitoring of tumor progression/regression in animal models. The effectiveness of different treatment strategies is displayed by an altered intensity of bioluminescence, demonstrating a change of the tumor burden. The aim of this study was to establish a reliable, reproducible colorectal hepatic metastases cancer animal model. METHODS Cells of the human colon carcinoma cell line HCT-116 Luc(pos) expressing the firefly luciferase enzyme gene were used. HCT-116 Luc(pos) cells (2.5 × 10(6)) were injected through the portal vein into the liver of immunoincompetent nude mice. BLI was used to analyze intrahepatic tumor burden and growth kinetic. RESULTS HCT-116 Luc(pos) cells demonstrated a progressive and reproducible growth in the liver after intraportal injection. Four days after injection, the animals were analyzed for tumor growth by BLI, and mice without or too low bioluminescence signals were excluded (between 10% and 20% animals). HCT-116 Luc(pos) intrahepatic tumors responded successfully to different dosages (5 and 10 mg/kg) of 5-fluorouracil. CONCLUSIONS BLI is an important tool with many potential advantages for investigators. The measurement of intrahepatic tumor growth by imaging luciferase activity noninvasively provides valuable information on tumor burden and effectiveness of therapy. Thus, the presented intrahepatic metastases model based on the growth of HCT-116 Luc(pos) cells is suitable for in vivo testing of different cancer therapy strategies.
Journal of Clinical Investigation | 2016
Simone S. Riedel; Jessica Haladyna; Matthew Bezzant; Brett M. Stevens; Daniel A. Pollyea; Amit U. Sinha; Scott A. Armstrong; Qi Wei; Roy M. Pollock; Scott R. Daigle; Craig T. Jordan; Patricia Ernst; Tobias Neff; Kathrin M. Bernt
Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin-derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML.
mAbs | 2014
Johannes Trebing; Isabell Lang; Martin Chopra; Steffen Salzmann; Mahan Moshir; Karen Silence; Simone S. Riedel; Daniela Siegmund; Andreas Beilhack; Christoph Otto; Harald Wajant
Expression of fibroblast growth factor (FGF)-inducible 14 (Fn14), a member of the tumor necrosis factor receptor superfamily, is typically low in healthy adult organisms, but strong Fn14 expression is induced in tissue injury and tissue remodeling. High Fn14 expression is also observed in solid tumors, which is why this receptor is under consideration as a therapeutic target in oncology. Here, we describe various novel mouse-human cross-reactive llama-derived recombinant Fn14-specific antibodies (5B6, 18D1, 4G5) harboring the human IgG1 Fc domain. In contrast to recombinant variants of the established Fn14-specific antibodies PDL192 and P4A8, all three llama-derived antibodies efficiently bound to the W42A and R56P mutants of human Fn14. 18D1 and 4G5, but not 5B6, efficiently blocked TNF-like weak inducer of apoptosis (TWEAK) binding at low concentrations (0.2–2 µg/ml). Oligomerization and Fcγ receptor (FcγR) binding converted all antibodies into strong Fn14 agonists. Variants of 18D1 with enhanced and reduced antibody-dependent cell-mediated cytotoxicity (ADCC) activity were further analyzed in vivo with respect to their effect on metastasis. In a xenogeneic model using human colon carcinoma cancer cells, both antibody variants were effective in reducing metastasis to the liver. In contrast, only the 18D1 variant with enhanced ADCC activity, but not its ADCC-defective counterpart, suppressed lung metastasis in the RENCA model. In sum, this suggests that Fn14 targeting might primarily act by triggering of antibody effector functions, but also by blockade of TWEAK-Fn14 interaction in some cases.
Experimental Hematology | 2015
Etienne Danis; Taylor Yamauchi; Kristen Echanique; Jessica Haladyna; Roshni Kalkur; Simone S. Riedel; Nan Zhu; Huafeng Xie; Kathrin M. Bernt; Stuart H. Orkin; Scott A. Armstrong; Tobias Neff
Polycomb repressive complex 2 (PRC2) is a chromatin regulator with central roles in development and cancer. The canonical function of PRC2 is the trimethylation of histone 3 on lysine residue 27. This epigenetic modification is associated with gene silencing. Both tumor suppressor and oncogenic functions have been reported for PRC2, depending on cellular context. In leukemia mediated by the leukemogenic fusion MLL-AF9, complete ablation of canonical PRC2 function by genetic inactivation of the core component embryonic ectoderm development (Eed) or by combined pharmacologic inhibition of the PRC2 methyltransferases EZH2 and EZH1 has a strong anti-leukemic effect, and this effect has been linked to de-repression of the PRC2 target locus Cdkn2a. We asked whether inactivation of Cdkn2a is sufficient to restore leukemic activity of Eed-inactivated MLL-AF9 leukemia cells, using combined genetic inactivation of Cdkn2a and Eed. We found that Cdkn2a inactivation partially rescues in vitro and in vivo growth of Eed-inactivated MLL-AF9 cells. However, the growth of Eed-null Cdkn2a-null MLL-AF9 cells in the absence of Cdkn2a remained severely compromised in vitro and in vivo, compared with that of their Eed-floxed Cdkn2a-null counterparts. RNA sequencing analysis revealed that several genes previously implicated in inefficient growth of MLL-AF9-transformed cells, including Gata2, Egr1, and Cdkn2b were de-repressed as a consequence of Eed inactivation. Furthermore, we found that direct binding targets of MLL fusion proteins are negatively enriched in Eed-inactivated Cdkn2a-null MLL-AF9-transformed cells. Our data indicate that interference with PRC2 function affects MLL-AF9-mediated leukemogenesis by both Cdkn2a-dependent and Cdkn2a-independent mechanisms.
BMC Medicine | 2013
Carina A. Bäuerlein; Simone S. Riedel; Jeanette Baker; Christian Brede; Ana-Laura Jordán Garrote; Martin Chopra; Miriam Ritz; Georg F. Beilhack; Stephan Schulz; Robert Zeiser; Paul G. Schlegel; Hermann Einsele; Robert S. Negrin; Andreas Beilhack
BackgroundAcute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention.MethodsMurine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles.ResultsWe identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD.ConclusionsBased on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.