Simret Beraki
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simret Beraki.
PLOS Genetics | 2008
Jenny U. Johansson; Jesper Ericsson; Juliette Janson; Simret Beraki; Davor Stanic; Slavena A. Mandic; Martin A. Wikström; Tomas Hökfelt; Sven Ove Ögren; Björn Rozell; Per-Olof Berggren; Christina Bark
Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes.
Molecular Psychiatry | 2005
Simret Beraki; Fredrik Aronsson; Håkan Karlsson; Sven Ove Ögren; Krister Kristensson
Epidemiological studies have indicated a link between certain neuropsychiatric diseases and exposure to viral infections. In order to examine long-term effects on behavior and gene expression in the brain of one candidate virus, we have used a model involving olfactory bulb injection of the neuro-adapted influenza A virus strain, WSN/33, in C57Bl/6 mice. Following this olfactory route of invasion, the virus targets neurons in the medial habenular, midline thalamic and hypothalamic nuclei as well as monoaminergic neurons in the brainstem. The mice survive and the viral infection is cleared from the brain within 12 days. When tested 14–20 weeks after infection, the mice displayed decreased anxiety in the elevated plus-maze and impaired spatial learning in the Morris water maze test. Elevated transcriptional activity of two genes encoding synaptic regulatory proteins, regulator of G-protein signaling 4 and calcium/calmodulin-dependent protein kinase IIα, was found in the amygdala, hypothalamus and cerebellum. It is of particular interest that the gene encoding RGS4, which has been related to schizophrenia, showed the most pronounced alteration. This study indicates that a transient influenza virus infection can cause persistent changes in emotional and cognitive functions as well as alterations in the expression of genes involved in the regulation of synaptic activities.
Brain Behavior and Immunity | 2009
Linnéa Asp; Simret Beraki; Krister Kristensson; Sven Ove Ögren; Håkan Karlsson
Epidemiological studies suggest that early life infections may contribute to the development of psychiatric disorders characterized by cognitive deficits. Here, we studied the effects of a neonatal influenza A/WSN/33 virus infection on locomotor activity, working memory and emotional behavior in adult mice. In addition to wild type mice, immunodeficient (Tap1(-/-)) mice lacking functional CD8(+) T cells, were included in the study to model the potential influence of a genetic deficit relating to virus clearance. Three to four months after the infection, infected Tap1(-/-) mice, but not wild type mice, exhibited deficits in working memory as well as increased rearing activity and anxiety. In the medial prefrontal cortices of these infected Tap1(-/-) mice reduced levels of type III Nrg1 transcripts were observed supporting a role for neuregulin 1 signaling in neuronal circuits involved in working memory. Virus replication, distribution or clearance did not differ between the two genotypes. The lack of CD8(+) T cells, however, appeared to contribute to a more pronounced glia response in Tap1(-/-) than in wild type mice. Thus, the present study suggest that the risk of developing deficits in cognitive and emotional behavior following a CNS infection during brain development is influenced by genetic variation in genes involved in the immune response.
The International Journal of Neuropsychopharmacology | 2009
Simret Beraki; Rochellys Diaz-Heijtz; Fadao Tai; Sven Ove Ögren
A number of studies indicate that glutamatergic N-methyl-D-aspartate (NMDA) neurotransmission is disturbed in schizophrenia partly based on the findings that NMDA receptor antagonists such as phencyclidine (PCP) can reproduce a schizophrenia-like syndrome in both humans and rodents. This study investigated whether repeated administration of low doses of PCP can induce cognitive dysfunctions in mice at doses which produce no sensorimotor disturbances. In addition, the effects on cognition were related to the expression of two genes, Arc and spinophilin, which have been related to neuronal plasticity and learning. Adult male C57Bl/6J mice received daily s.c. doses of PCP (0.5-2.0 mg/kg) or saline for 7 d. Testing was performed 24 h after the last day of treatment. Only the 2.0 mg/kg PCP dose produced a consistent impairment in spatial learning and working memory performed in the water-maze task without any apparent sensorimotor deficits. Importantly, the 2.0 mg/kg PCP dose produced no impairment in a non-spatial learning paradigm in the water-maze task. PCP treatment altered Arc mRNA levels in the hippocampus and retrosplenial agranular cortex while leaving the striatum and prefrontal cortex unaffected. The mRNA expression of spinophilin was down-regulated in striatum by repeated PCP treatment. These results demonstrate that repeated treatment with low doses of PCP in mice can produce specific cognitive deficits which are associated with alterations in gene expression in brain regions that appear to play a role in the pathophysiology of schizophrenia. These results suggest that the low-dose PCP model may have significant potential in characterizing the behavioural and molecular mechanisms underlying cognitive deficits seen in schizophrenia patients.
Neuroreport | 2005
Linnéa Asp; Simret Beraki; Fredrik Aronsson; Lina Rosvall; Sven Ove Ögren; Krister Kristensson; Håkan Karlsson
In this study, we tested the hypothesis that exposure to a maternal infection during fetal life can lead to the appearance of alterations in the brain later in life. C57BL/6 mice were infected intranasally with influenza A/WSN/33 virus on day 14 of gestation. The levels of transcripts encoding neuroleukin and fibroblast growth factor 5 were significantly elevated in the brains of the virus-exposed offspring at 90 and 280 days of age, but not at earlier time-points. For neuroleukin, this difference could also be observed at the protein level. Thus, a maternal influenza A virus infection can give rise to alterations in gene expression in the brain that become apparent only after a prepubertal latency period.
European Neuropsychopharmacology | 2008
Simret Beraki; Alexander Kuzmin; Fadao Tai; Sven Ove Ögren
Archive | 2008
Simret Beraki
Archive | 2008
Simret Beraki
European Neuropsychopharmacology | 2008
Simret Beraki; R. Diaz-Heijtz; Fadao Tai; Sven Ove Ögren
BMC Proceedings | 2008
Linnéa Asp; Simret Beraki; Krister Kristensson; Sven OveÖgren; Håkan Karlsson