Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sin Chien Siw is active.

Publication


Featured researches published by Sin Chien Siw.


Journal of Thermal Science and Engineering Applications | 2013

Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils

Minking K. Chyu; Sin Chien Siw

The performance goal of modern gas turbine engines, both land-base and air-breathing engines, can be achieved by increasing the turbine inlet temperature (TIT). The level of TIT in the near future can reach as high as 1700 °C for utility turbines and over 1900 °C for advanced military engines. Advanced and innovative cooling techniques become one of the crucial major elements supporting the development of modern gas turbines, both land-based and air-breathing engines with continual increment of turbine inlet temperature (TIT) in order to meet higher energy demand and efficiency. This paper discusses state-of-the-art airfoil cooling techniques that are mainly applicable in the mainbody and trailing edge section of turbine airfoil. Potential internal cooling designs for near-term applications based on current manufacturing capabilities are identified. A literature survey focusing primarily on the past four to five years has also been performed.


ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition | 2011

Effects of Pin-Fin Height on Flow and Heat Transfer in a Rectangular Duct

Xingkai Chi; Tom Shih; K. M. Bryden; Sin Chien Siw; Minking K. Chyu; Robin Ames; R. A. Dennis

CFD simulations were performed to study the flow and heat transfer in a rectangular duct (Wd × Hd , where Wd /Hd = 3) with a staggered array of circular pin fins (D = Hd /4) mounted on the two opposite walls separated by Hd . For this array of pin fins, five different pin-fin height (H) combinations were examined, and they are (1) H = Hd = 4D (i.e., all pin fins extended from wall to wall), (2) H = 3D on both walls, (3) H = 2D on both walls, (4) H = 4D on one wall and H = 2D on the opposite wall, and (5) H = 3D on one wall and H = 2D on the opposite wall. The H values studied give H/D values of 2, 3, and 4 and C/D values of 2, 1, and 0, where C is the distance between the pin-fin tip and the opposite wall. For all cases, the duct wall and pin-fin surface temperatures were maintained at Tw = 313.15 K; the temperature and the speed of the air at the duct inlet were uniform at Tinlet = 343.15 K and U = 8.24 m/s; the pressure at the duct exit was fixed at Pb = 1 atm; and the Reynolds number based on the duct hydraulic diameter and duct inlet conditions was Re = 15,000. This CFD study is based on 3-D steady RANS, where the ensemble averaged continuity, compressible Navier-Stokes, and energy equations are closed by the thermally perfect equation of state and the two-equation realizable k-e turbulence model with wall functions and with the low-Reynolds number model of Chen and Patel in the near-wall region. The usefulness of this CFD study was assessed by comparing predicted heat-transfer coefficient and friction factor with available experimental data. Results are presented to show how the flow induced by arrays of pin fins of different heights affects temperature distribution, surface heat transfer, and pressure loss.Copyright


ASME Turbo Expo 2013: Turbine Technical Conference and Exposition | 2013

Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets

Nicholas Miller; Sin Chien Siw; Minking K. Chyu; Mary Anne Alvin

The current study focused on the effects of varying jet diameter and surface roughness on the target plate from jet impingement. A single row of five jets, plenum fed, expels air onto the flat target surface and the spent air is constrained to exit in only one direction, causing the jets to encounter maximum cross-flow. Baseline jet plates were equipped with pressure taps, one for each jet, to determine flow. The initial parameters, diameter D, height to diameter H/D, and jet spacing to diameter S/D is 9.53 mm (0.375 in), 2 and 4 respectively. Upon defining the optimum array of jet diameters, three test cases will be conducted using different surface features, 90 degree ribs, chevrons and X-shaped ribs on the target plate to further enhance the heat transfer performance of the jet impingement. The parameters, width W and height H, for the surface features will be set constant at 3.18 mm (0.125 in). The Reynolds number, Re, in this experimental study ranged from 50,000 to 80,000. A transient liquid crystal technique is employed in this study to determine the local and average heat transfer coefficient distribution on the target plate. The baseline tests revealed that the heat transfer is more predominate in the upstream jets impingement zones, however, by varying the diameters the heat transfer is more uniformly distributed downstream. The results also revealed that the rib-turbulators, especially X-shaped ribs, can further enhance heat transfer enhancement in the downstream jets where crossflow can affect impingement.Copyright


ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012

Heat Transfer Enhancement of Internal Cooling Passage With Triangular and Semi-Circular Shaped Pin-Fin Arrays

Sin Chien Siw; Minking K. Chyu; Mary Anne Alvin

A systematic experimental study has been conducted to explore the heat transfer behavior of triangular and semicircular shaped pin-fin arrays as compared to the circular shaped pin-fin array, that serve as a baseline case. The main advantage of using triangular and semi-circular shaped pin-fin arrays will results in reduced component weight and potentially increases in heat transfer performance. Three staggered arrays with different inter-pin spacing in both transverse and longitudinal are explored in order to determine the optimal configuration for these three dimensional element. Both semi-circular and circular shaped pin-fin arrays are based on typical inter-pin spacing of 2.5 times the pin diameter. The channel geometry (width, W = 76.2mm, height, E = 25.4mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. All pin-fin elements are fully bridged from one endwall to the opposite endwall. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The heat transfer measurement employs a hybrid liquid crystal imaging technique, which combined one-dimensional, transient conduction model and lumped heat-capacitance model. Triangular pin-fin arrays produce the highest heat transfer enhancement, while the semi-circular pin-fin array yields the lowest heat transfer enhancement. Sharp edges at each triangular pin-fin generated more wake and turbulence, resulting in more mixing, induces greater heat transfer enhancement by approximately 10%–20% as compared to the typical pin-fins of circular cross-section. More uniform heat transfer is also observed on the endwall and neighboring pin-fins in all triangular shaped pin-fin arrays. However, triangular pin-fin arrays give the highest pressure loss due to the largest induced form drag among all cases, while circular pin-fin array exhibits the lowest pressure loss.© 2012 ASME


ASME Turbo Expo 2010: Power for Land, Sea, and Air | 2010

Effects of Pin Detached Space on Heat Transfer and From Pin Fin Arrays

Sin Chien Siw; Minking K. Chyu; Tom Shih; Mary Anne Alvin

Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W = 101.6 mm, E = 25.4 mm) simulates an internal cooling passage of wide aspect ratio (4:1) in a gas turbine airfoil. With a given pin diameter, D = 6.35 mm = 1/4 E, three different pin-fin height-to-diameter ratios, H/D = 4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin-tip and one of the endwalls, i.e. C/D = 0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the un-obstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin-tip and the endwall have a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D leads to lower heat transfer enhancement and pressure drop. However, C/D = 1, i.e. H/D = 3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D = 0 and C/D = 2, i.e. H/D = 4 or 2, respectively.Copyright


ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015

The Effects of Different Pin-Fin Arrays on Heat Transfer and Pressure Loss in a Narrow Channel

Sin Chien Siw; Austen D. Fradeneck; Minking K. Chyu; Mary Anne Alvin

This paper describes a detailed experimental investigation of a narrow rectangular channel based on the double-wall cooling concept that can be applicable to a gas turbine airfoil. The channel has dimensions of 63.5 mm by 12.7 mm, corresponding to an aspect ratio of 5:1. The pin diameter, D, is 12.7 mm, and the ratio of pin-height-to-diameter, H/D is 1. The inter-pin spacing is varies in both spanwise and streamwise directions to form two inline, and two staggered pin-fin configurations. The Reynolds number, based on the hydraulic diameter of the pin fin and the mean bulk velocity, ranges from 6,000 to 15,000. The experiments employ a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. The heat transfer on both the endwall and pin-fin surfaces revealed similar pattern compared to the typical circular pin-fin array, which were conducted at higher Reynolds number. The total heat transfer enhancement of current pin-fin array is approximately four times higher than that of fully developed smooth channel with low pressure loss, which resulted in much higher thermal performance compared to other pin-fin array as reported in the literature.Copyright


ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015

Heat Transfer Enhancement and Pressure Loss Characteristics of Zig-Zag Channel With Dimples and Protrusions

Sin Chien Siw; Minking K. Chyu; Mary Anne Alvin

This paper described a detailed experimental study to explore an internal cooling passage that mimic a “zig-zag” pattern. There are four passages connected by 110° turning angle in a periodic fashion, hence the name. Experiments are performed in a scaled-up test channel with a cross-section of 63.5mm by 25.4mm, corresponding to the aspect ratio of 2.5:1. Compared to the conventional straight internal cooling passages, the zig-zag channel with several turns will generate additional secondary vortices while providing longer flow path that allows coolant to remove much more heat load prior to discharge into the hot mainstream. Surface features, (1) dimples, and (2) protrusions are added to the zig-zag channel to further enhance the heat transfer, while contributed to larger wetted area. The experiment utilizes the well-established transient liquid crystal technique to determine the local heat transfer coefficient distribution of the entire zig-zag channel. Protrusions exhibit higher heat transfer enhancement than that of dimples. However, both designs proved to be inferior compared to the rib-turbulators. Pressure loss in these test channels is approximately twofold higher than that of straight smooth test channel due to the presence of turns; but the pressure loss is lower than the zig-zag channel with rib-turbulators. The result revealed that one advantage of having either protrusions or dimples as these surface elements will resulted in gradual and more uniform increment of heat transfer throughout the entire channel compared to previous test cases.Copyright


ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014

Trailing Edge Cooling of Gas Turbine Airfoil Using Blockages With Straight and Inclined Holes

Sin Chien Siw; Minking K. Chyu; Mary Anne Alvin

This paper describes the detailed experimental studies of heat transfer enhancement and pressure loss characteristics internal cooling passages using single, double and triple blockages equipped with straight and inclined holes. The blockage consist of 7 holes with the diameter, D = 6.35mm, which is 0.5 of the height of the channel. Three different hole inclination angles ranging from 0°, 15° and 30° from the horizontal plane are explored. The case with straight holes (0°) is considered as baseline case, while the cases with inclined holes are introduced to enhance heat transfer performance. The transient liquid crystal technique is employed to deduce the heat transfer coefficient on the internal cooling channel, while the pressure loss of the entire channel is measured using pressure taps connected to the digital manometer. Numerical analysis is later performed using ANSYS CFX, based on the shear stress turbulence (SST) model to provide detailed insights about the flow field in the channel, which explains the heat transfer phenomena caused by varying the hole inclination angle. The heat transfer performance of the blockages is higher than conventional configuration using vortex generators, i.e., pin-fins by approximately two folds, while accompanied by much higher pressure loss. The proposed inclined holes array exhibits more effective impingement effects resulted in a substantial cooling performance compared to the baseline case by approximately 50%. This design can be applicable to the trailing edge of gas turbine airfoils, which can provide high heat transfer rate and pressure loss from repeated significant area contractions.Copyright


ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014

Heat Transfer and Pressure Loss Characteristics of a Narrow Internal Cooling Passage at Low Reynolds Number

Sin Chien Siw; Nicholas Miller; Minking K. Chyu; Mary Anne Alvin

This paper describes a detailed experimental investigation of a narrow rectangular channel based on the double-wall cooling concept that can be applicable to a gas turbine airfoil. The channel has dimensions of 63.5 mm by 12.7 mm, corresponding to an aspect ratio of 5:1. A single pin-fin element, arranged in 9 rows is fitted into the channel. The pin diameter, D, is 12.7 mm, and the ratio of pin-height-to-diameter, H/D is 1. The pins are arranged based on the typical inter-pin spacing of 2.5D in both spanwise and streamwise directions. The Reynolds number, based on the hydraulic diameter of the pin fin and the mean bulk velocity, ranges from 6,000 to 15,000. The experiments employ a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Commercially available CFD software, ANSYS CFX, is used to qualitatively correlate the experimental results and to provide detailed insights of the flow field created by the array.The heat transfer on both the endwall and pin-fin surfaces revealed similar pattern compared to the typical circular pin-fin array, which were conducted at higher Reynolds number. The total heat transfer enhancement of current pin-fin array is approximately five times higher than that of fully developed smooth channel with low pressure loss, which resulted in much higher thermal performance compared to other pin-fin array as reported in the literature.Copyright


international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2013

Optimization of Single Row Jet Impingement Array by Varying Flow Rates

Nicholas Miller; Sin Chien Siw; Minking K. Chyu; Mary Anne Alvin

The current detailed experimental study focuses on the optimization of heat transfer performance through jet impingement by varying the coolant flow rate to each individual jet. The test section consists of an array of five jets, which is individually fed and metered separately, and expels air through one exit. The jet diameter D, channel height to jet diameter H/D, and jet spacing to diameter S/D, are all held constant at 9.53 mm (0.375 in), 2 and 4 respectively. The Reynolds number, which is based on jet diameter and bulk mean velocity at each jet, ranges from 50,000 to 80,000. A transient liquid crystal technique is employed in this study to determine the local and overall-average heat transfer coefficient distribution on the target plate. Commercially available CFD software, ANSYS CFX, is used to qualitatively correlate the experimental results and to provide detailed insights of the flow field created by the array of jets. The results revealed higher heat transfer coefficients in the impingement area, while decreasing in the radial direction. The upstream region exhibited high heat transfer performance, which is ultimately driven by the jet impingement from the first jet to the third jet. Heat transfer performance decreases at the downstream region with the development of cross-flow. By varying the jet flow rates at approximately ±2%, local heat transfer at the downstream region is elevated and the total heat transfer enhancement on the target surface is enhanced up to 35% compared to the baseline case.Copyright

Collaboration


Dive into the Sin Chien Siw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Anne Alvin

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. Dennis

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge