Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sina A. Gharib is active.

Publication


Featured researches published by Sina A. Gharib.


Nature Genetics | 2013

Systematic identification of trans eQTLs as putative drivers of known disease associations

Harm-Jan Westra; Marjolein J. Peters; Tonu Esko; Hanieh Yaghootkar; Johannes Kettunen; Mark W. Christiansen; Benjamin P. Fairfax; Katharina Schramm; Joseph E. Powell; Alexandra Zhernakova; Daria V. Zhernakova; Jan H. Veldink; Leonard H. van den Berg; Juha Karjalainen; Sebo Withoff; André G. Uitterlinden; Albert Hofman; Fernando Rivadeneira; Peter A. C. 't Hoen; Eva Reinmaa; Krista Fischer; Mari Nelis; Lili Milani; David Melzer; Luigi Ferrucci; Andrew Singleton; Dena Hernandez; Michael A. Nalls; Georg Homuth; Matthias Nauck

Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE), altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3′ UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.


Journal of Clinical Investigation | 2007

Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.

Tomas Vaisar; Subramaniam Pennathur; Pattie S. Green; Sina A. Gharib; Andrew N. Hoofnagle; Marian C. Cheung; Jaeman Byun; Simona Vuletic; Sean Y. Kassim; Pragya Singh; Helen Chea; Robert H. Knopp; John D. Brunzell; Randolph L. Geary; Alan Chait; Xue Qiao Zhao; Keith B. Elkon; Santica M. Marcovina; Paul M. Ridker; John F. Oram; Jay W. Heinecke

HDL lowers the risk for atherosclerotic cardiovascular disease by promoting cholesterol efflux from macrophage foam cells. However, other antiatherosclerotic properties of HDL are poorly understood. To test the hypothesis that the lipoprotein carries proteins that might have novel cardioprotective activities, we used shotgun proteomics to investigate the composition of HDL isolated from healthy subjects and subjects with coronary artery disease (CAD). Unexpectedly, our analytical strategy identified multiple complement-regulatory proteins and a diverse array of distinct serpins with serine-type endopeptidase inhibitor activity. Many acute-phase response proteins were also detected, supporting the proposal that HDL is of central importance in inflammation. Mass spectrometry and biochemical analyses demonstrated that HDL3 from subjects with CAD was selectively enriched in apoE, raising the possibility that HDL carries a unique cargo of proteins in humans with clinically significant cardiovascular disease. Collectively, our observations suggest that HDL plays previously unsuspected roles in regulating the complement system and protecting tissue from proteolysis and that the protein cargo of HDL contributes to its antiinflammatory and antiatherogenic properties.


Nature Genetics | 2010

Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

Dana B. Hancock; Mark Eijgelsheim; Jemma B. Wilk; Sina A. Gharib; Laura R. Loehr; Kristin D. Marciante; Nora Franceschini; Yannick M.T.A. van Durme; Ting Hsu Chen; R. Graham Barr; Matthew B. Schabath; David Couper; Guy Brusselle; Bruce M. Psaty; Cornelia M. van Duijn; Jerome I. Rotter; André G. Uitterlinden; Albert Hofman; Naresh M. Punjabi; Fernando Rivadeneira; Alanna C. Morrison; Paul L. Enright; Kari E. North; Susan R. Heckbert; Thomas Lumley; Bruno H. Stricker; George T. O'Connor; Stephanie J. London

Spirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and its ratio to forced vital capacity (FEV1/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE Consortium studies: Atherosclerosis Risk in Communities, Cardiovascular Health Study, Framingham Heart Study and Rotterdam Study. We identified eight loci associated with FEV1/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1 and HTR4) and one locus associated with FEV1 (INTS12-GSTCD-NPNT) at or near genome-wide significance (P < 5 × 10−8) in the CHARGE Consortium dataset. Our findings may offer insights into pulmonary function and pathogenesis of chronic lung disease.


American Journal of Respiratory and Critical Care Medicine | 2013

Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis.

Chi F. Hung; Geoffrey Linn; Yu Hua Chow; Akio Kobayashi; Kristen Mittelsteadt; William A. Altemeier; Sina A. Gharib; Lynn M. Schnapp; Jeremy S. Duffield

RATIONALE The origin of cells that make pathologic fibrillar collagen matrix in lung disease has been controversial. Recent studies suggest mesenchymal cells may contribute directly to fibrosis. OBJECTIVES To characterize discrete populations of mesenchymal cells in the normal mouse lung and to map their fate after bleomycin-induced lung injury. METHODS We mapped the fate of Foxd1-expressing embryonic progenitors and their progeny during lung development, adult homeostasis, and after fibrosing injury in Foxd1-Cre; Rs26-tdTomato-R mice. We studied collagen-I(α)1-producing cells in normal and diseased lungs using Coll-GFP(Tg) mice. MEASUREMENTS AND MAIN RESULTS Foxd1-expressing embryonic progenitors enter lung buds before 13.5 days post-conception, expand, and form an extensive lineage of mesenchymal cells that have characteristics of pericytes. A collagen-I(α)1-expressing mesenchymal population of distinct lineage is also found in adult lung, with features of a resident fibroblast. In contrast to resident fibroblasts, Foxd1 progenitor-derived pericytes are enriched in transcripts for innate immunity, vascular development, WNT signaling pathway, and cell migration. Foxd1 progenitor-derived pericytes expand after bleomycin lung injury, and activate expression of collagen-I(α)1 and the myofibroblast marker αSMA in fibrotic foci. In addition, our studies suggest a distinct lineage of collagen-I(α)1-expressing resident fibroblasts that also expands after lung injury is a second major source of myofibroblasts. CONCLUSIONS We conclude that the lung contains an extensive population of Foxd1 progenitor-derived pericytes that are an important lung myofibroblast precursor population.


Journal of Immunology | 2005

Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation.

William A. Altemeier; Gustavo Matute-Bello; Sina A. Gharib; Robb W. Glenny; Thomas R. Martin; W. Conrad Liles

Mechanical ventilation (MV) with tidal volumes of 10–12 ml/kg is considered safe in the absence of acute lung injury (ALI). However, recent studies show that, when lung injury is already present, tidal volumes of this magnitude increase inflammation and injury in the lungs. We hypothesized that MV with tidal volumes of 10-ml/kg can also function as a cofactor in the initiation of ALI by modulating the transcriptional response to bacterial products. To test this hypothesis, we developed a mouse model in which MV did not independently cause inflammation or injury but augmented the inflammatory response to low-dose aspirated LPS and promoted development of ALI. We analyzed gene expression in lungs from 24 mice assigned to four different groups: control, MV only, intratracheal LPS only, and MV + LPS. There were twice as many differentially regulated genes in the MV + LPS group compared with the LPS-only group and 10 times as many differentially regulated genes compared with the MV-only group. For genes up-regulated by LPS treatment alone, the addition of MV further augmented expression. Cytokine concentrations in bronchoalveolar lavage fluid and tissue distribution of an intracellular protein, GADD45-γ, correlated with mRNA levels. We conclude that MV with conventional tidal volumes enhanced the transcriptional response to LPS and promoted development of ALI.


Journal of The American Society of Nephrology | 2012

Pericyte TIMP3 and ADAMTS1 Modulate Vascular Stability after Kidney Injury

Claudia Schrimpf; Cuiyan Xin; Gabriella Campanholle; Sean E. Gill; William B. Stallcup; Shuei-Liong Lin; George E. Davis; Sina A. Gharib; Benjamin D. Humphreys; Jeremy S. Duffield

Kidney pericytes are progenitors of scar-forming interstitial myofibroblasts that appear after injury. The function of kidney pericytes as microvascular cells and how these cells detach from peritubular capillaries and migrate to the interstitial space, however, are poorly understood. Here, we used an unbiased approach to identify genes in kidney pericytes relevant to detachment and differentiation in response to injury in vivo, with a particular focus on genes regulating proteolytic activity and angiogenesis. Kidney pericytes rapidly activated expression of a disintegrin and metalloprotease with thrombospondin motifs-1 (ADAMTS1) and downregulated its inhibitor, tissue inhibitor of metalloproteinase 3 (TIMP3) in response to injury. Similarly to brain pericytes, kidney pericytes bound to and stabilized capillary tube networks in three-dimensional gels and inhibited metalloproteolytic activity and angiogenic signaling in endothelial cells. In contrast, myofibroblasts did not have these vascular stabilizing functions despite their derivation from kidney pericytes. Pericyte-derived TIMP3 stabilized and ADAMTS1 destabilized the capillary tubular networks. Furthermore, mice deficient in Timp3 had a spontaneous microvascular phenotype in the kidney resulting from overactivated pericytes and were more susceptible to injury-stimulated microvascular rarefaction with an exuberant fibrotic response. Taken together, these data support functions for kidney pericytes in microvascular stability, highlight central roles for regulators of extracellular proteolytic activity in capillary homoeostasis, and identify ADAMTS1 as a marker of activation of kidney pericytes.


American Journal of Respiratory and Critical Care Medicine | 2012

Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction

Jemma B. Wilk; Nick Shrine; Laura R. Loehr; Jing Hua Zhao; Ani Manichaikul; Lorna M. Lopez; Albert V. Smith; Susan R. Heckbert; Joanna Smolonska; Wenbo Tang; Daan W. Loth; Ivan Curjuric; Jennie Hui; Michael H. Cho; Jeanne C. Latourelle; Amanda P. Henry; Melinda C. Aldrich; Per Bakke; Terri H. Beaty; Amy R. Bentley; Ingrid B. Borecki; Guy Brusselle; Kristin M. Burkart; Ting Hsu Chen; David Couper; James D. Crapo; Gail Davies; Josée Dupuis; Nora Franceschini; Amund Gulsvik

RATIONALE Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. OBJECTIVES Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. METHODS Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations. MEASUREMENTS AND MAIN RESULTS The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. CONCLUSIONS These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.


American Journal of Physiology-cell Physiology | 2013

Cellular Mechanisms of Tissue Fibrosis. 3. Novel mechanisms of kidney fibrosis

Gabriela Campanholle; Giovanni Ligresti; Sina A. Gharib; Jeremy S. Duffield

Chronic kidney disease, defined as loss of kidney function for more than three months, is characterized pathologically by glomerulosclerosis, interstitial fibrosis, tubular atrophy, peritubular capillary rarefaction, and inflammation. Recent studies have identified a previously poorly appreciated, yet extensive population of mesenchymal cells, called either pericytes when attached to peritubular capillaries or resident fibroblasts when embedded in matrix, as the progenitors of scar-forming cells known as myofibroblasts. In response to sustained kidney injury, pericytes detach from the vasculature and differentiate into myofibroblasts, a process not only causing fibrosis, but also directly contributing to capillary rarefaction and inflammation. The interrelationship of these three detrimental processes makes myofibroblasts and their pericyte progenitors an attractive target in chronic kidney disease. In this review, we describe current understanding of the mechanisms of pericyte-to-myofibroblast differentiation during chronic kidney disease, draw parallels with disease processes in the glomerulus, and highlight promising new therapeutic strategies that target pericytes or myofibroblasts. In addition, we describe the critical paracrine roles of epithelial, endothelial, and innate immune cells in the fibrogenic process.


PLOS Pathogens | 2008

Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model.

Fiona E. Lovegrove; Sina A. Gharib; Lourdes Peña-Castillo; Samir N. Patel; John T. Ruzinski; Timothy R. Hughes; W. Conrad Liles; Kevin C. Kain

Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36 −/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality.


American Journal of Respiratory and Critical Care Medicine | 2008

Proteomic and Computational Analysis of Bronchoalveolar Proteins during the Course of the Acute Respiratory Distress Syndrome

Dong W. Chang; Shinichi Hayashi; Sina A. Gharib; Tomas Vaisar; S. Trevor King; Mitsuhiro Tsuchiya; John T. Ruzinski; David R. Park; Gustavo Matute-Bello; Mark M. Wurfel; Roger E. Bumgarner; Jay W. Heinecke; Thomas R. Martin

RATIONALE Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. OBJECTIVES The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). METHODS Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. MEASUREMENTS AND MAIN RESULTS An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. CONCLUSIONS Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.

Collaboration


Dive into the Sina A. Gharib's collaboration.

Top Co-Authors

Avatar

Bruce M. Psaty

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Guy Brusselle

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Brian E. Cade

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Redline

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Traci M. Bartz

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Gottlieb

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge