Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sina Haftchenary is active.

Publication


Featured researches published by Sina Haftchenary.


Anti-Cancer Drugs | 2011

Inhibiting aberrant Stat3 function with molecular therapeutics: a progress report.

Sina Haftchenary; Miriam Avadisian; Patrick T. Gunning

Aberrantly activated signal transducer and activator of transcription 3 (Stat3) protein plays a master regulatory role in the progression and survival of human cancers through the upregulation of target protooncogenes. Numerous human cancers, including breast, ovarian, prostate, leukemia, lymphoma, multiple myeloma, and brain cancers have been shown to harbor constitutively active Stat3 protein resulting in the expression of protooncogenes. The transcriptionally active Stat3–Stat3 protein homodimer has been extensively targeted as a means to suppress the aberrant Stat3 function in human cancer. This review will outline the recent progress made toward identifying drug-like compounds capable of effectively inhibiting aberrant Stat3 signaling through the disruption of Stat3 protein–protein interactions.


ACS Medicinal Chemistry Letters | 2013

Potent Targeting of the STAT3 Protein in Brain Cancer Stem Cells: A Promising Route for Treating Glioblastoma

Sina Haftchenary; H. Artee Luchman; Andriana O. Jouk; Anthony J. Veloso; Brent D. G. Page; Xin Ran Cheng; Sean S. Dawson; Natalie Grinshtein; Vijay M. Shahani; Kagan Kerman; David R. Kaplan; Carly Griffin; Ahmed Aman; Rima Al-awar; Samuel Weiss; Patrick T. Gunning

The STAT3 gene is abnormally active in glioblastoma (GBM) and is a critically important mediator of tumor growth and therapeutic resistance in GBM. Thus, for poorly treated brain cancers such as gliomas, astrocytomas, and glioblastomas, which harbor constitutively activated STAT3, a STAT3-targeting therapeutic will be of significant importance. Herein, we report a most potent, small molecule, nonphosphorylated STAT3 inhibitor, 31 (SH-4-54) that strongly binds to STAT3 protein (K D = 300 nM). Inhibitor 31 potently kills glioblastoma brain cancer stem cells (BTSCs) and effectively suppresses STAT3 phosphorylation and its downstream transcriptional targets at low nM concentrations. Moreover, in vivo, 31 exhibited blood-brain barrier permeability, potently controlled glioma tumor growth, and inhibited pSTAT3 in vivo. This work, for the first time, demonstrates the power of STAT3 inhibitors for the treatment of BTSCs and validates the therapeutic efficacy of a STAT3 inhibitor for GBM clinical application.


ACS Medicinal Chemistry Letters | 2011

Identification of Purine-Scaffold Small-Molecule Inhibitors of Stat3 Activation by QSAR Studies

Vijay M. Shahani; Peibin Yue; Sina Haftchenary; Wei Zhao; Julie L. Lukkarila; Xiaolei Zhang; Daniel P. Ball; Christina Nona; Patrick T. Gunning; James Turkson

To facilitate the discovery of clinically useful Stat3 inhibitors, computational analysis of the binding to Stat3 of the existing Stat3 dimerization disruptors and quantitative structure−activity relationships (QSAR) were pursued, by which a pharmacophore model was derived for predicting optimized Stat3 dimerization inhibitors. The 2,6,9-trisubstituted-purine scaffold was functionalized in order to access the three subpockets of the Stat3 SH2 domain surface and to derive potent Stat3-binding inhibitors. Select purine scaffolds showed good affinities (KD, 0.8−12 μM) for purified, nonphosphorylated Stat3 and inhibited Stat3 DNA-binding activity in vitro and intracellular phosphorylation at 20−60 μM. Furthermore, agents selectively suppressed viability of human prostate, breast and pancreatic cancer cells, and v-Src-transformed mouse fibroblasts that harbor aberrant Stat3 activity. Studies herein identified novel small-molecule trisubstituted purines as effective inhibitors of constitutively active Stat3 and of the viability of Stat3-dependent tumor cells, and are the first to validate the use of purine bases as templates for building novel Stat3 inhibitors.


Journal of Medicinal Chemistry | 2013

Inhibiting Aberrant Signal Transducer and Activator of Transcription Protein Activation with Tetrapodal, Small Molecule Src Homology 2 Domain Binders: Promising Agents against Multiple Myeloma

Brent D. G. Page; Danielle Croucher; Zhihua Li; Sina Haftchenary; Victor H. Jimenez-Zepeda; Jennifer M. Atkinson; Paul A. Spagnuolo; Yoong Lim Wong; Robert Colaguori; Andrew M. Lewis; Aaron D. Schimmer; Suzanne Trudel; Patrick T. Gunning

The signal transducer and activator of transcription (STAT) proteins represent a family of cytoplasmic transcription factors that regulate a pleiotropic range of biological processes. In particular, Stat3 protein has attracted attention as it regulates the expression of genes involved in a variety of malignant processes, including proliferation, survival, migration, and drug resistance. Multiple myeloma (MM) is an incurable hematologic malignancy that often exhibits abnormally high levels of Stat3 activity. Although current treatment strategies can improve the clinical management of MM, it remains uniformly incurable with a dismal median survival time post-treatment of 3-4 years. Thus, novel targeted therapeutics are critically needed to improve MM patient outcomes. We herein report the development of a series of small molecule Stat3 inhibitors with potent anti-MM activity in vitro. These compounds showed high-affinity binding to Stat3s SH2 domain, inhibited intracellular Stat3 phosphorylation, and induced apoptosis in MM cell lines at low micromolar concentrations.


Journal of Biological Chemistry | 2014

Changes in Signal Transducer and Activator of Transcription 3 (STAT3) Dynamics Induced by Complexation with Pharmacological Inhibitors of Src Homology 2 (SH2) Domain Dimerization

Diana Resetca; Sina Haftchenary; Patrick T. Gunning; Derek J. Wilson

Background: Salicylic acid-based inhibitors of signal transducer and activator of transcription 3 (STAT3) are predicted to interact with the Src homology 2 (SH2) domain, inhibiting dimerization. Results: STAT3-inhibitor interactions were interrogated by hydrogen-deuterium exchange (HDX) mass spectrometry (MS). Conclusion: HDX MS revealed local and global perturbations in STAT3 dynamics. Significance: Understanding STAT3 inhibitor interactions with the SH2 domain is critical to inhibitor development. The activity of the transcription factor signal transducer and activator of transcription 3 (STAT3) is dysregulated in a number of hematological and solid malignancies. Development of pharmacological STAT3 Src homology 2 (SH2) domain interaction inhibitors holds great promise for cancer therapy, and a novel class of salicylic acid-based STAT3 dimerization inhibitors that includes orally bioavailable drug candidates has been recently developed. The compounds SF-1-066 and BP-1-102 are predicted to bind to the STAT3 SH2 domain. However, given the highly unstructured and dynamic nature of the SH2 domain, experimental confirmation of this prediction was elusive. We have interrogated the protein-ligand interaction of STAT3 with these small molecule inhibitors by means of time-resolved electrospray ionization hydrogen-deuterium exchange mass spectrometry. Analysis of site-specific evolution of deuterium uptake induced by the complexation of STAT3 with SF-1-066 or BP-1-102 under physiological conditions enabled the mapping of the in silico predicted inhibitor binding site to the STAT3 SH2 domain. The binding of both inhibitors to the SH2 domain resulted in significant local decreases in dynamics, consistent with solvent exclusion at the inhibitor binding site and increased rigidity of the inhibitor-complexed SH2 domain. Interestingly, inhibitor binding induced hot spots of allosteric perturbations outside of the SH2 domain, manifesting mainly as increased deuterium uptake, in regions of STAT3 important for DNA binding and nuclear localization.


Molecular Cancer Therapeutics | 2016

Applying Small Molecule Signal Transducer and Activator of Transcription-3 (STAT3) Protein Inhibitors as Pancreatic Cancer Therapeutics

Carolyn C. Arpin; Stephen Mac; Yanlin Jiang; Huiwen Cheng; Michelle Grimard; Brent D. G. Page; Malgorzata M. Kamocka; Sina Haftchenary; Han Su; Daniel P. Ball; David A. Rosa; Ping Shan Lai; Rodolfo F. Gómez-Biagi; Ahmed M. Ali; Rahul Rana; Helmut Hanenberg; Kagan Kerman; Kyle McElyea; George E. Sandusky; Patrick T. Gunning; Melissa L. Fishel

Constitutively activated STAT3 protein has been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic intervention. In this study, PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in vivo in the low micromolar range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nmol/L by surface plasmon resonance, and showed no effect in a kinome screen (>100 cancer-relevant kinases). In vitro studies demonstrated potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better model the tumor and its microenvironment, we utilized three-dimensional (3D) cultures of patient-derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts (CAF). In this coculture model, inhibition of tumor growth is maintained following STAT3 inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death following treatment of 3D cocultures with PG-S3-001. The 3D model was predictive of in vivo efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells in a relevant 3D model, as well as in a xenograft model using patient-derived cells. Mol Cancer Ther; 15(5); 794–805. ©2016 AACR.


Oncotarget | 2015

STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation.

Mohini Singh; Neha Garg; Chitra Venugopal; Robin M. Hallett; Tomas Tokar; Nicole McFarlane; Sujeivan Mahendram; David Bakhshinyan; Branavan Manoranjan; Parvez Vora; Maleeha Qazi; Carolynn C. Arpin; Brent D. G. Page; Sina Haftchenary; David A. Rosa; Ping-Shan Lai; Rodolfo F. Gómez-Biagi; Ahmed M. Ali; Andrew M. Lewis; Mulu Geletu; Naresh Murty; John A. Hassell; Igor Jurisica; Patrick T. Gunning; Sheila K. Singh

Brain metastases (BM) represent the most common tumor to affect the adult central nervous system. Despite the increasing incidence of BM, likely due to consistently improving treatment of primary cancers, BM remain severely understudied. In this study, we utilized patient-derived stem cell lines from lung-to-brain metastases to examine the regulatory role of STAT3 in brain metastasis initiating cells (BMICs). Annotation of our previously described BMIC regulatory genes with protein-protein interaction network mapping identified STAT3 as a novel protein interactor. STAT3 knockdown showed a reduction in BMIC self-renewal and migration, and decreased tumor size in vivo. Screening of BMIC lines with a library of STAT3 inhibitors identified one inhibitor to significantly reduce tumor formation. Meta-analysis identified the oncomir microRNA-21 (miR-21) as a target of STAT3 activity. Inhibition of miR-21 displayed similar reductions in BMIC self-renewal and migration as STAT3 knockdown. Knockdown of STAT3 also reduced expression of known downstream targets of miR-21. Our studies have thus identified STAT3 and miR-21 as cooperative regulators of stemness, migration and tumor initiation in lung-derived BM. Therefore, STAT3 represents a potential therapeutic target in the treatment of lung-to-brain metastases.


Molecular and Cellular Biochemistry | 2015

Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells

Katja Linher-Melville; Sina Haftchenary; Patrick T. Gunning; Gurmit Singh

System Xc- is a cystine/glutamate antiporter that contributes to the maintenance of cellular redox balance. The human xCT (SLC7A11) gene encodes the functional subunit of system Xc-. Transcription factors regulating antioxidant defense mechanisms including system Xc- are of therapeutic interest, especially given that aggressive breast cancer cells exhibit increased system Xc- function. This investigation provides evidence that xCT expression is regulated by STAT3 and/or STAT5A, functionally affecting the antiporter in human breast cancer cells. Computationally analyzing two kilobase pairs of the xCT promoter/5′ flanking region identified a distal gamma-activated site (GAS) motif, with truncations significantly increasing luciferase reporter activity. Similar transcriptional increases were obtained after treating cells transiently transfected with the full-length xCT promoter construct with STAT3/5 pharmacological inhibitors. Knock-down of STAT3 or STAT5A with siRNAs produced similar results. However, GAS site mutation significantly reduced xCT transcriptional activity, suggesting that STATs may interact with other transcription factors at more proximal promoter sites. STAT3 and STAT5A were bound to the xCT promoter in MDA-MB-231 cells, and binding was disrupted by pre-treatment with STAT inhibitors. Pharmacologically suppressing STAT3/5 activation significantly increased xCT mRNA and protein levels, as well as cystine uptake, glutamate release, and total levels of intracellular glutathione. Our data suggest that STAT proteins negatively regulate basal xCT expression. Blocking STAT3/5-mediated signaling induces an adaptive, compensatory mechanism to protect breast cancer cells from stress, including reactive oxygen species, by up-regulating xCT expression and the function of system Xc-. We propose that targeting system Xc- together with STAT3/5 inhibitors may heighten therapeutic anti-cancer effects.


Gut | 2016

Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells

Azadeh Arabzadeh; Jeremy Dupaul-Chicoine; Valérie Breton; Sina Haftchenary; Sara Yumeen; Claire Turbide; Maya Saleh; Kevin McGregor; Celia M. T. Greenwood; Uri David Akavia; Richard S. Blumberg; Patrick T. Gunning; Nicole Beauchemin

Objective Nearly 20%–29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. Design Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. Results MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. Conclusions CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas.


ACS Medicinal Chemistry Letters | 2015

Identification of Bidentate Salicylic Acid Inhibitors of PTP1B

Sina Haftchenary; Andriana O. Jouk; Isabelle Aubry; Andrew M. Lewis; Melissa Landry; Daniel P. Ball; Andrew E. Shouksmith; Catherine V. Collins; Michel L. Tremblay; Patrick T. Gunning

PTP1B is a master regulator in the insulin and leptin metabolic pathways. Hyper-activated PTP1B results in insulin resistance and is viewed as a key factor in the onset of type II diabetes and obesity. Moreover, inhibition of PTP1B expression in cancer cells dramatically inhibits cell growth in vitro and in vivo. Herein, we report the computationally guided optimization of a salicylic acid-based PTP1B inhibitor 6, identifying new and more potent bidentate PTP1B inhibitors, such as 20h, which exhibited a > 4-fold improvement in activity. In CHO-IR cells, 20f, 20h, and 20j suppressed PTP1B activity and restored insulin receptor phosphorylation levels. Notably, 20f, which displayed a 5-fold selectivity for PTP1B over the closely related PTPσ protein, showed no inhibition of PTP-LAR, PRL2 A/S, MKPX, or papain. Finally, 20i and 20j displayed nanomolar inhibition of PTPσ, representing interesting lead compounds for further investigation.

Collaboration


Dive into the Sina Haftchenary's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron D. Schimmer

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge