Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sinan Keten is active.

Publication


Featured researches published by Sinan Keten.


Nature Materials | 2010

Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk

Sinan Keten; Zhi Ping Xu; Britni Ihle; Markus J. Buehler

Silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials known. The exceptional strength of silkworm and spider silks, exceeding that of steel, arises from beta-sheet nanocrystals that universally consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintuitive because the key molecular interactions in beta-sheet nanocrystals are hydrogen bonds, one of the weakest chemical bonds known. Here we report a series of large-scale molecular dynamics simulations, revealing that beta-sheet nanocrystals confined to a few nanometres achieve higher stiffness, strength and mechanical toughness than larger nanocrystals. We illustrate that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties. Our findings explain how size effects can be exploited to create bioinspired materials with superior mechanical properties in spite of relying on mechanically inferior, weak hydrogen bonds.


Nano Letters | 2010

Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.

Andrea Nova; Sinan Keten; Nicola Pugno; Alberto Redaelli; Markus J. Buehler

Spider dragline silk is one of the strongest, most extensible and toughest biological materials known, exceeding the properties of many engineered materials including steel. Silk features a hierarchical architecture where highly organized, densely H-bonded beta-sheet nanocrystals are arranged within a semiamorphous protein matrix consisting of 3(1)-helices and beta-turn protein structures. By using a bottom-up molecular-based approach, here we develop the first spider silk mesoscale model, bridging the scales from Angstroms to tens to potentially hundreds of nanometers. We demonstrate that the specific nanoscale combination of a crystalline phase and a semiamorphous matrix is crucial to achieve the unique properties of silks. Our results reveal that the superior mechanical properties of spider silk can be explained solely by structural effects, where the geometric confinement of beta-sheet nanocrystals, combined with highly extensible semiamorphous domains, is the key to reach great strength and great toughness, despite the dominance of mechanically inferior chemical interactions such as H-bonding. Our model directly shows that semiamorphous regions govern the silk behavior at small deformation, unraveling first when silk is being stretched and leading to the large extensibility of the material. Conversely, beta-sheet nanocrystals play a significant role in defining the mechanical behavior of silk at large-deformation. In particular, the ultimate tensile strength of silk is controlled by the strength of beta-sheet nanocrystals, which is directly related to their size, where small beta-sheet nanocrystals are crucial to reach outstanding levels of strength and toughness. Our results and mechanistic insight directly explain recent experimental results, where it was shown that a significant change in the strength and toughness of silk can be achieved solely by tuning the size of beta-sheet nanocrystals. Our findings help to unveil the material design strategy that enables silk to achieve superior material performance despite simple and inferior material constituents. This concept could lead to a new materials design paradigm, where enhanced functionality is not achieved using complex building blocks but rather through the utilization of simple repetitive constitutive elements arranged in hierarchical structures from nano to macro.


Nano Letters | 2007

Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale

Sinan Keten; Markus J. Buehler

The ultrastructure of protein materials such as spider silk, muscle tissue, or amyloid fibers consists primarily of beta-sheets structures, composed of hierarchical assemblies of H-bonds. Despite the weakness of H-bond interactions, which have intermolecular bonds 100 to 1000 times weaker than those in ceramics or metals, these materials combine exceptional strength, robustness, and resilience. We discover that the rupture strength of H-bond assemblies is governed by geometric confinement effects, suggesting that clusters of at most 3-4 H-bonds break concurrently, even under uniform shear loading of a much larger number of H-bonds. This universally valid result leads to an intrinsic strength limitation that suggests that shorter strands with less H-bonds achieve the highest shear strength at a critical length scale. The hypothesis is confirmed by direct large-scale full-atomistic MD simulation studies of beta-sheet structures in explicit solvent. Our finding explains how the intrinsic strength limitation of H-bonds can be overcome by the formation of a nanocomposite structure of H-bond clusters, thereby enabling the formation of larger and much stronger beta-sheet structures. Our results explain recent experimental proteomics data, suggesting a correlation between the shear strength and the prevalence of beta-strand lengths in biology.


Journal of the Royal Society Interface | 2010

Nanostructure and molecular mechanics of spider dragline silk protein assemblies

Sinan Keten; Markus J. Buehler

Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains

Theodor Ackbarow; Xuefeng Chen; Sinan Keten; Markus J. Buehler

The fundamental fracture mechanisms of biological protein materials remain largely unknown, in part, because of a lack of understanding of how individual protein building blocks respond to mechanical load. For instance, it remains controversial whether the free energy landscape of the unfolding behavior of proteins consists of multiple, discrete transition states or the location of the transition state changes continuously with the pulling velocity. This lack in understanding has thus far prevented us from developing predictive strength models of protein materials. Here, we report direct atomistic simulation that over four orders of magnitude in time scales of the unfolding behavior of α-helical (AH) and β-sheet (BS) domains, the key building blocks of hair, hoof, and wool as well as spider silk, amyloids, and titin. We find that two discrete transition states corresponding to two fracture mechanisms exist. Whereas the unfolding mechanism at fast pulling rates is sequential rupture of individual hydrogen bonds (HBs), unfolding at slow pulling rates proceeds by simultaneous rupture of several HBs. We derive the hierarchical Bell model, a theory that explicitly considers the hierarchical architecture of proteins, providing a rigorous structure–property relationship. We exemplify our model in a study of AHs, and show that 3–4 parallel HBs per turn are favorable in light of the proteins mechanical and thermodynamical stability, in agreement with experimental findings that AHs feature 3.6 HBs per turn. Our results provide evidence that the molecular structure of AHs maximizes its robustness at minimal use of building materials.


Journal of the American Chemical Society | 2011

Processable Cyclic Peptide Nanotubes with Tunable Interiors

Rami Hourani; Chen Zhang; Rob van der Weegen; Luis Ruiz; Changyi Li; Sinan Keten; Brett A. Helms; Ting Xu

A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the D,L-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.


Journal of Biomechanics | 2010

Atomistic simulation of nanomechanical properties of Alzheimer's AΒ(1-40) amyloid fibrils under compressive and tensile loading

Raffaella Paparcone; Sinan Keten; Markus J. Buehler

In addition to being associated with severe degenerative diseases, amyloids show exceptional mechanical properties including great strength, sturdiness and elasticity. However, thus far physical models that explain these properties remain elusive, and our understanding of molecular deformation and failure mechanisms of individual amyloid fibrils is limited. Here we report a series of molecular dynamics simulations, carried out to analyze the mechanical response of two-fold symmetric Abeta(1-40) amyloid fibrils, twisted protein nanofilaments consisting of a H-bonded layered structure. We find a correlation of the mechanical behavior with chemical and nanostructural rearrangements of the fibril during compressive and tensile deformation, showing that the density of H-bonds varies linearly with the measured strain. Further, we find that both compressive and tensile deformation is coupled with torsional deformation, which is manifested in a strong variation of the interlayer twist angle that is found to be proportional to both the applied stress and measured strain. In both compression and tension we observe an increase of the Youngs modulus from 2.34 GPa (for less than 0.1% strain in compression and 0.2% strain in tension), to 12.43 GPa for compression and 18.05 GPa for tension. The moduli at larger deformation are in good agreement with experimental data, where values in the range of 10-20 GPa have been reported. Our studies confirm that amyloids feature a very high stiffness, and elucidate the importance of the chemical and structural rearrangements of the fibrils during deformation.


Applied Physics Letters | 2010

Atomistic model of the spider silk nanostructure

Sinan Keten; Markus J. Buehler

Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called “prestretched” molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.


Nature Communications | 2015

The role of mechanics in biological and bio-inspired systems

Paul Egan; Robert Sinko; Philip R. LeDuc; Sinan Keten

Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.


Journal of Chemical Theory and Computation | 2014

Systematic Method for Thermomechanically Consistent Coarse-Graining: A Universal Model for Methacrylate-Based Polymers.

David D. Hsu; Wenjie Xia; Steven G. Arturo; Sinan Keten

We present a versatile systematic two-bead-per-monomer coarse-grain modeling strategy for simulating the thermomechanical behavior of methacrylate polymers at length and time scales far exceeding atomistic simulations. We establish generic bonded interaction parameters via Boltzmann inversion of probability distributions obtained from the common coarse-grain bead center locations of five different methacrylate polymers. Distinguishing features of each monomer side-chain group are captured using Lennard-Jones nonbonded potentials with parameters specified to match the density and glass-transition temperature values obtained from all-atomistic simulations. The developed force field is validated using Flory-Fox scaling relationships, self-diffusion coefficients of monomers, and modulus of elasticity for p(MMA). Our approach establishes a transferable, efficient, and accurate scale-bridging strategy for investigating the thermomechanics of copolymers, polymer blends, and nanocomposites.

Collaboration


Dive into the Sinan Keten's collaboration.

Top Co-Authors

Avatar

Wenjie Xia

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Markus J. Buehler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Luis Ruiz

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

David D. Hsu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Robert Sinko

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Jake Song

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Zhaoxu Meng

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Dan Ma

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack F. Douglas

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge