Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sindy K. Y. Tang is active.

Publication


Featured researches published by Sindy K. Y. Tang.


Nature | 2011

Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity

Tak-Sing Wong; Sung Kang; Sindy K. Y. Tang; Elizabeth Smythe; Benjamin Hatton; Alison Grinthal; Joanna Aizenberg

Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air–liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach—inspired by Nepenthes pitcher plants—is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert ‘slippery’ interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1–1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and transportation, optical sensing, medicine, and as self-cleaning and anti-fouling materials operating in extreme environments.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Paper-supported 3D cell culture for tissue-based bioassays

Ratmir Derda; Anna Laromaine; Akiko Mammoto; Sindy K. Y. Tang; Donald E. Ingber; George M. Whitesides

Fundamental investigations of human biology, and the development of therapeutics, commonly rely on 2D cell-culture systems that do not accurately recapitulate the structure, function, or physiology of living tissues. Systems for 3D cultures exist but do not replicate the spatial distributions of oxygen, metabolites, and signaling molecules found in tissues. Microfabrication can create architecturally complex scaffolds for 3D cell cultures that circumvent some of these limitations; unfortunately, these approaches require instrumentation not commonly available in biology laboratories. Here we report that stacking and destacking layers of paper impregnated with suspensions of cells in extracellular matrix hydrogel makes it possible to control oxygen and nutrient gradients in 3D and to analyze molecular and genetic responses. Stacking assembles the “tissue”, whereas destacking disassembles it, and allows its analysis. Breast cancer cells cultured within stacks of layered paper recapitulate behaviors observed both in 3D tumor spheroids in vitro and in tumors in vivo: Proliferating cells in the stacks localize in an outer layer a few hundreds of microns thick, and growth-arrested, apoptotic, and necrotic cells concentrate in the hypoxic core where hypoxia-sensitive genes are overexpressed. Altering gas permeability at the ends of stacks controlled the gradient in the concentration of the O2 and was sufficient by itself to determine the distribution of viable cells in 3D. Cell cultures in stacked, paper-supported gels offer a uniquely flexible approach to study cell responses to 3D molecular gradients and to mimic tissue- and organ-level functions.


Lab on a Chip | 2009

A multi-color fast-switching microfluidic droplet dye laser

Sindy K. Y. Tang; Zhenyu Li; Adam R. Abate; Jeremy Agresti; David A. Weitz; Demetri Psaltis; George M. Whitesides

We describe a multi-color microfluidic dye laser operating in whispering gallery mode based on a train of alternating droplets containing solutions of different dyes; this laser is capable of switching the wavelength of its emission between 580 nm and 680 nm at frequencies up to 3.6 kHz-the fastest among all dye lasers reported; it has potential applications in on-chip spectroscopy and flow cytometry.


PLOS ONE | 2011

Multizone Paper Platform for 3D Cell Cultures

Ratmir Derda; Sindy K. Y. Tang; Anna Laromaine; Bobak Mosadegh; Estrella Hong; Martin T. Mwangi; Akiko Mammoto; Donald E. Ingber; George M. Whitesides

In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures.


Molecules | 2011

Diversity of phage-displayed libraries of peptides during panning and amplification.

Ratmir Derda; Sindy K. Y. Tang; S. Cory Li; Simon Ng; Wadim L. Matochko; Mohammad R. Jafari

The amplification of phage-displayed libraries is an essential step in the selection of ligands from these libraries. The amplification of libraries, however, decreases their diversity and limits the number of binding clones that a screen can identify. While this decrease might not be a problem for screens against targets with a single binding site (e.g., proteins), it can severely hinder the identification of useful ligands for targets with multiple binding sites (e.g., cells). This review aims to characterize the loss in the diversity of libraries during amplification. Analysis of the peptide sequences obtained in several hundred screens of peptide libraries shows explicitly that there is a significant decrease in library diversity that occurs during the amplification of phage in bacteria. This loss during amplification is not unique to specific libraries: it is observed in many of the phage display systems we have surveyed. The loss in library diversity originates from competition among phage clones in a common pool of bacteria. Based on growth data from the literature and models of phage growth, we show that this competition originates from growth rate differences of only a few percent for different phage clones. We summarize the findings using a simple two-dimensional “phage phase diagram”, which describes how the collapse of libraries, due to panning and amplification, leads to the identification of only a subset of the available ligands. This review also highlights techniques that allow elimination of amplification-induced losses of diversity, and how these techniques can be used to improve phage-display selection and enable the identification of novel ligands.


Optics Express | 2011

Continuously tunable microdroplet-laser in a microfluidic channel

Sindy K. Y. Tang; Ratmir Derda; Qimin Quan; Marko Loncar; George M. Whitesides

This paper describes the generation and optical characterization of a series of dye-doped droplet-based optical microcavities with continuously decreasing radius in a microfluidic channel. A flow-focusing nozzle generated the droplets (~21 μm in radius) using benzyl alcohol as the disperse phase and water as the continuous phase. As these drops moved down the channel, they dissolved, and their size decreased. The emission characteristics from the drops could be matched to the whispering gallery modes from spherical micro-cavities. The wavelength of emission from the drops changed from 700 to 620 nm as the radius of the drops decreased from 21 μm to 7 μm. This range of tunability in wavelengths was larger than that reported in previous work on droplet-based cavities.


Analytical Chemistry | 2009

Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate

Claudiu A. Stan; Sindy K. Y. Tang; George M. Whitesides

This paper describes a method to control the volume and the velocity of drops generated in a flow-focusing device dynamically and independently. This method involves simultaneous tuning of the temperature of the nozzle of the device and of the flow rate of the continuous phase; the method requires a continuous phase liquid that has a viscosity that varies steeply with temperature. Increasing the temperature of the flow-focusing nozzle from 0 to 80 degrees C increased the volume of the drops by almost 2 orders of magnitude. Tuning both the temperature and the flow rate controlled the drop volume and the drop velocity independently; this feature is not possible in a basic flow-focusing device. This paper also demonstrates a procedure for identifying the range of possible drop volumes and drop velocities for a given flow-focusing device and shows how to generate drops with a specified volume and velocity within this range. This method is easy to implement in on-chip applications where thermal management is already incorporated in the system, such as DNA amplification using the polymerase chain reaction and nanoparticle synthesis.


Applied Physics Letters | 2006

Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels

Sindy K. Y. Tang; Brian T. Mayers; Dmitri V. Vezenov; George M. Whitesides

This letter describes the design and operation of a liquid-core liquid-cladding (L2) optical waveguide composed of a thermal gradient across a compositionally homogeneous liquid flowing in a microfluidic channel at low Reynolds number. Two streams of liquid at a higher temperature (the cladding) sandwich a stream of liquid at a lower temperature (the core). This temperature difference results in a contrast in refractive index across the width of the channel that is sufficient to guide light. The use of a single homogeneous liquid in this L2 system simplifies recycling, and facilitates closed-loop operation. Furthermore, with radiative and inline heating of the liquids, it should be possible to reconfigure this optical system with considerable flexibility.


Nucleic Acids Research | 2014

Prospective identification of parasitic sequences in phage display screens

Wadim L. Matochko; S. Cory Li; Sindy K. Y. Tang; Ratmir Derda

Phage display empowered the development of proteins with new function and ligands for clinically relevant targets. In this report, we use next-generation sequencing to analyze phage-displayed libraries and uncover a strong bias induced by amplification preferences of phage in bacteria. This bias favors fast-growing sequences that collectively constitute <0.01% of the available diversity. Specifically, a library of 109 random 7-mer peptides (Ph.D.-7) includes a few thousand sequences that grow quickly (the ‘parasites’), which are the sequences that are typically identified in phage display screens published to date. A similar collapse was observed in other libraries. Using Illumina and Ion Torrent sequencing and multiple biological replicates of amplification of Ph.D.-7 library, we identified a focused population of 770 ‘parasites’. In all, 197 sequences from this population have been identified in literature reports that used Ph.D.-7 library. Many of these enriched sequences have confirmed function (e.g. target binding capacity). The bias in the literature, thus, can be viewed as a selection with two different selection pressures: (i) target-binding selection, and (ii) amplification-induced selection. Enrichment of parasitic sequences could be minimized if amplification bias is removed. Here, we demonstrate that emulsion amplification in libraries of ∼106 diverse clones prevents the biased selection of parasitic clones.


Angewandte Chemie | 2010

Uniform Amplification of Phage with Different Growth Characteristics in Individual Compartments Consisting of Monodisperse Droplets

Ratmir Derda; Sindy K. Y. Tang; George M. Whitesides

Uniform amplification of a mixture of phage clones is central to the selection of peptides and proteins presented on the coat proteins of phage (phage display).[1,2] Uniform amplification cannot be achieved when phage having different rates of growth compete with each other in a common solution. Here we describe a method for uniform amplification of individual phage clones, from a mixture of clones possessing different growth characteristics. We use a microfluidic droplet generator[3] to separate individual clones from a mixture of slowly growing (S) and rapidly growing (R) M13 filamentous phage into droplets of growth media (ca. 200 µm in diameter) containing E. coli. At sufficiently low concentrations of phage, each droplet contains one or no phage particles. Different phage cannot compete for bacterial hosts when isolated in different droplets, and the relative number of S and R clones present at the start is preserved after amplification. Because amplification of phage clones depends on the size of the droplets in which they reside, the use of droplets of uniform size is essential for the success of this process.

Collaboration


Dive into the Sindy K. Y. Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya Gai

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minkyu Kim

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge