Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sine Reker Hadrup is active.

Publication


Featured researches published by Sine Reker Hadrup.


Science | 2016

Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

Nicholas McGranahan; Andrew Furness; Rachel Rosenthal; Sofie Ramskov; Rikke Birgitte Lyngaa; Sunil Kumar Saini; Mariam Jamal-Hanjani; Gareth A. Wilson; Nicolai Juul Birkbak; Crispin Hiley; Thomas B.K. Watkins; Seema Shafi; Nirupa Murugaesu; Richard Mitter; Ayse U. Akarca; Joseph Linares; Teresa Marafioti; Jake Y. Henry; Eliezer M. Van Allen; Diana Miao; Bastian Schilling; Dirk Schadendorf; Levi A. Garraway; Vladimir Makarov; Naiyer A. Rizvi; Alexandra Snyder; Matthew D. Hellmann; Taha Merghoub; Jedd D. Wolchok; Sachet A. Shukla

The cellular ancestry of tumor antigens One contributing factor in antitumor immunity is the repertoire of neoantigens created by genetic mutations within tumor cells. Like the corresponding mutations, these neoantigens show intratumoral heterogeneity. Some are present in all tumor cells (clonal), and others are present in only a fraction of cells (subclonal). In a study of lung cancer and melanoma, McGranahan et al. found that a high burden of clonal tumor neoantigens correlated with improved patient survival, an increased presence of tumor-infiltrating lymphocytes, and a durable response to immunotherapy. Science, this issue p. 1463 Analysis of the cellular ancestry of tumor neoantigens can predict which are most likely to induce an immune response. As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.


Nature Methods | 2009

Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers.

Sine Reker Hadrup; Arnold H. Bakker; Chengyi J Shu; Rikke Andersen; Jerre van Veluw; Pleun Hombrink; Emilie Castermans; Per thor Straten; Christian U. Blank; John B. A. G. Haanen; Mirjam H.M. Heemskerk; Ton N. M. Schumacher

The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of T-cell immunity. To address this issue, we developed a combinatorial encoding strategy that allows the parallel detection of a multitude of different T-cell populations in a single sample. Detection of T cells from peripheral blood by combinatorial encoding is as efficient as detection with conventionally labeled multimers but results in a substantially increased sensitivity and, most notably, allows comprehensive screens to be performed. We obtained proof of principle for the feasibility of large-scale screening of human material by analysis of human leukocyte antigen A3–restricted T-cell responses to known and potential melanoma-associated antigens in peripheral blood from individuals with melanoma.


Nature Protocols | 2006

Generation of peptide-MHC class I complexes through UV-mediated ligand exchange.

Boris Rodenko; Mireille Toebes; Sine Reker Hadrup; Wim J. E. van Esch; Annemieke M Molenaar; Ton N. M. Schumacher; Huib Ovaa

Major histocompatibility complex (MHC) class I molecules present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. MHC-bound peptides are critical for the stability of the MHC complex, and standard strategies for the production of recombinant MHC complexes are based on in vitro refolding reactions with specific peptides. This strategy is not amenable to high-throughput production of vast collections of MHC molecules. We have developed conditional MHC ligands that form stable complexes with MHC molecules but can be cleaved upon UV irradiation. The resulting empty, peptide-receptive MHC molecules can be charged with epitopes of choice under native conditions. Here we describe in-depth procedures for the high-throughput production of peptide-MHC (pMHC) complexes by MHC exchange, the analysis of peptide exchange efficiency by ELISA and the parallel production of MHC tetramers for T-cell detection. The production of the conditional pMHC complex by an in vitro refolding reaction can be achieved within 2 weeks, and the actual high-throughput MHC peptide exchange and subsequent MHC tetramer formation require less than a day.*Note: In the version of this article originally published online, the Reagent Setup listing for wash buffer should have read: “20 mM Tris pH 8, 100 mM NaCl.” This error has been corrected in the HTML and PDF versions of the article.


Nature | 2016

Neoantigen landscape dynamics during human melanoma–T cell interactions

Els M. E. Verdegaal; Noel Fcc de Miranda; Marten Visser; Tom Harryvan; Marit M. van Buuren; Rikke Andersen; Sine Reker Hadrup; Caroline E. van der Minne; Remko Schotte; Hergen Spits; John B. A. G. Haanen; Ellen Kapiteijn; Ton N. M. Schumacher; Sjoerd H. van der Burg

Recognition of neoantigens that are formed as a consequence of DNA damage is likely to form a major driving force behind the clinical activity of cancer immunotherapies such as T-cell checkpoint blockade and adoptive T-cell therapy. Therefore, strategies to selectively enhance T-cell reactivity against genetically defined neoantigens are currently under development. In mouse models, T-cell pressure can sculpt the antigenicity of tumours, resulting in the emergence of tumours that lack defined mutant antigens. However, whether the T-cell-recognized neoantigen repertoire in human cancers is constant over time is unclear. Here we analyse the stability of neoantigen-specific T-cell responses and the antigens they recognize in two patients with stage IV melanoma treated by adoptive T-cell transfer. The T-cell-recognized neoantigens can be selectively lost from the tumour cell population, either by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer cells and T cells, which suggest that T cells mediate neoantigen immunoediting, and indicate that the therapeutic induction of broad neoantigen-specific T-cell responses should be used to avoid tumour resistance.


OncoImmunology | 2012

TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

Pia Kvistborg; Chengyi Jenny Shu; Bianca Heemskerk; Manuel Fankhauser; Charlotte Albæk Thrue; Mireille Toebes; Nienke van Rooij; Carsten Linnemann; Marit M. van Buuren; Jos Urbanus; Joost B. Beltman; Per thor Straten; Yong F. Li; Paul F. Robbins; Michal J. Besser; Jacob Schachter; Gemma G. Kenter; Mark E. Dudley; Steven A. Rosenberg; John B. A. G. Haanen; Sine Reker Hadrup; Ton N. M. Schumacher

There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.


Cancer Research | 2012

Dissection of T cell antigen specificity in human melanoma

Rikke Andersen; Charlotte Albæk Thrue; Niels Junker; Rikke Birgitte Lyngaa; Marco Donia; Eva Ellebaek; Inge Marie Svane; Ton N. M. Schumacher; Per thor Straten; Sine Reker Hadrup

Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes predominantly from differentiation and cancer-testis antigens. Notably, the majority of these responses were of low frequency and tumor-specific T-cell frequencies decreased during rapid expansion. A further notable observation was a large variation in the T-cell specificities detected in cultures established from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined.


Journal of Translational Medicine | 2012

Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients

Eva Ellebaek; Trine Zeeberg Iversen; Niels Junker; Marco Donia; Lotte Engell-Noerregaard; Özcan Met; Lisbet Rosenkrantz Hölmich; Rikke Andersen; Sine Reker Hadrup; Mads Hald Andersen; Per thor Straten; Inge Marie Svane

BackgroundAdoptive cell therapy may be based on isolation of tumor-specific T cells, e.g. autologous tumor infiltrating lymphocytes (TIL), in vitro activation and expansion and the reinfusion of these cells into patients upon chemotherapy induced lymphodepletion. Together with high-dose interleukin (IL)-2 this treatment has been given to patients with advanced malignant melanoma and impressive response rates but also significant IL-2 associated toxicity have been observed. Here we present data from a feasibility study at a Danish Translational Research Center using TIL adoptive transfer in combination with low-dose subcutaneous IL-2 injections.MethodsThis is a pilot trial (ClinicalTrials.gov identifier: NCT00937625) including patients with metastatic melanoma, PS ≤1, age <70, measurable and progressive disease and no involvement of the central nervous system. Six patients were treated with lymphodepleting chemotherapy, TIL infusion, and 14 days of subcutaneous low-dose IL-2 injections, 2 MIU/day.ResultsLow-dose IL-2 considerably decreased the treatment related toxicity with no grade 3–4 IL-2 related adverse events. Objective clinical responses were seen in 2 of 6 treated patients with ongoing complete responses (30+ and 10+ months), 2 patients had stable disease (4 and 5 months) and 2 patients progressed shortly after treatment. Tumor-reactivity of the infused cells and peripheral lymphocytes before and after therapy were analyzed. Absolute number of tumor specific T cells in the infusion product tended to correlate with clinical response and also, an induction of peripheral tumor reactive T cells was observed for 1 patient in complete remission.ConclusionComplete and durable responses were induced after treatment with adoptive cell therapy in combination with low-dose IL-2 which significantly decreased toxicity of this therapy.


Cancer Microenvironment | 2013

Effector CD4 and CD8 T Cells and Their Role in the Tumor Microenvironment

Sine Reker Hadrup; Marco Donia; Per thor Straten

T cells in tumors—the so-called tumor infiltrating lymphocytes (TIL) have been studied intensively over the past years. Compelling evidence point to a clinical relevance for high numbers of T cells at the tumor site with CD8 memory T cells as a key denominator for overall survival (OS) in patients with colo-rectal cancer (CRC), and also for others solid cancers. These data goes hand in hand with studies of clonality of TIL showing the T cells among TIL are expanded clonally, and also that tumor specific T cells of CD4 as well as CD8 type are enriched at the tumor site. The tumor microenvironment is hostile to T cell function e.g., due to expression of enzymes that depletes the amino acids tryptophan and arginine, high concentration of tumor secreted lactate, and presence innate cells or regulatory T cells both with suppressive activity. Analyses of the specificity of TILs in melanoma demonstrate that quite few known antigens are in fact recognized by these cultures underscoring patient unique and/or mutated antigens may represent important target for recognition.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7

Arnold H. Bakker; Rieuwert Hoppes; Carsten Linnemann; Mireille Toebes; Boris Rodenko; Celia R. Berkers; Sine Reker Hadrup; Wim J. E. van Esch; Mirjam H.M. Heemskerk; Huib Ovaa; Ton N. M. Schumacher

Major histocompatibility complex (MHC) class I multimer technology has become an indispensable immunological assay system to dissect antigen-specific cytotoxic CD8+ T cell responses by flow cytometry. However, the development of high-throughput assay systems, in which T cell responses against a multitude of epitopes are analyzed, has been precluded by the fact that for each T cell epitope, a separate in vitro MHC refolding reaction is required. We have recently demonstrated that conditional ligands that disintegrate upon exposure to long-wavelength UV light can be designed for the human MHC molecule HLA-A2. To determine whether this peptide-exchange technology can be developed into a generally applicable approach for high throughput MHC based applications we set out to design conditional ligands for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Here, we describe the development and characterization of conditional ligands for this set of human MHC molecules and apply the peptide-exchange technology to identify melanoma-associated peptides that bind to HLA-A3 with high affinity. The conditional ligand technology developed here will allow high-throughput MHC-based analysis of cytotoxic T cell immunity in the vast majority of Western European individuals.


Nature Medicine | 2013

High-throughput identification of antigen-specific TCRs by TCR gene capture

Carsten Linnemann; Bianca Heemskerk; Pia Kvistborg; Roelof Jc Kluin; Dmitriy A. Bolotin; Xiaojing Chen; Kaspar Bresser; Marja Nieuwland; Remko Schotte; Samira Michels; Lorenz Jahn; Pleun Hombrink; Nicolas Legrand; Chengyi Jenny Shu; Ilgar Z. Mamedov; Arno Velds; Christian U. Blank; John B. A. G. Haanen; Maria A. Turchaninova; Ron M. Kerkhoven; Hergen Spits; Sine Reker Hadrup; Mirjam H.M. Heemskerk; Thomas Blankenstein; Dmitriy M. Chudakov; Gavin M. Bendle; Ton N. M. Schumacher

The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We have developed a high-throughput DNA-based strategy to identify TCR sequences by the capture and sequencing of genomic DNA fragments encoding the TCR genes. We establish the value of this approach by assembling a large library of cancer germline tumor antigen–reactive TCRs. Furthermore, by exploiting the quantitative nature of TCR gene capture, we show the feasibility of identifying antigen-specific TCRs in oligoclonal T cell populations from either human material or TCR-humanized mice. Finally, we demonstrate the ability to identify tumor-reactive TCRs within intratumoral T cell subsets without knowledge of antigen specificities, which may be the first step toward the development of autologous TCR gene therapy to target patient-specific neoantigens in human cancer.

Collaboration


Dive into the Sine Reker Hadrup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inge Marie Svane

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ton N. M. Schumacher

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marco Donia

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Mads Hald Andersen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Rikke Andersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Rikke Birgitte Lyngaa

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Anne-Mette Bjerregaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Aron Charles Eklund

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge